

CxSystem2

CxSystem2 is a simulation framework for cortical networks, which operates on personal computers. It is implemented in Python
on top of the popular Brian2 simulator [https://brian2.readthedocs.io/en/stable/index.html], and runs on Linux,
Windows and MacOS. There is also a web-based version available via
the Human Brain Project Brain Simulation Platform (BSP) [https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/].

CxSystem2 embraces the main goal of Brian – minimizing development time – by providing the user with
a simplified interface. While many simple models can be written in pure Brian code, more complex models can get
hard to manage due to the large number of biological details.

We currently provide two interfaces for constructing networks: a browser-based interface (locally or via the BSP),
and a file-based interface (json or csv). Before incorporating neuron models into a network,
the user can explore their behavior using the Neurodynlib submodule. Spike output and 3D structure of network simulations can be
visualized using ViSimpl [http://gmrv.es/gmrvvis/visimpl/], a visualization tool developed by the
GMRV Lab [http://gmrv.es/gmrvvis/].

More information on the technical details and our motivation is available here [https://researchportal.helsinki.fi/files/126265396/Andalibi_2019_NECO.pdf].
We have used the simulator to construct a simplified version of a comprehensive cortical microcircuit [https://researchportal.helsinki.fi/files/126265461/Hokkanen_2019_NECO.pdf].

The preliminary version of CxSystem2 was developed at the Aalto University [https://www.aalto.fi/en] in 2012-2015, and
the current version was developed at the HUS Helsinki University Hospital [https://www.hus.fi/en/Pages/default.aspx] and
University of Helsinki [https://www.helsinki.fi/en] in 2013-2019. The software is distributed under the terms of the GNU GPL v3.

Contents:

	Introduction
	Using the BSP interface

	Installing locally

	Neurodynlib

	Visualization in ViSimpl

	Tutorials
	1 - Running an example simulation

	2 - Basic visualization

	3 - Building a new model

	4 - Using neurodynlib

	User’s guide
	Anatomy & simulation configuration

	Physiology configuration

	Batch simulations

	Running on cluster

	Visualization

	Command-line interface

	Running the BUI locally

	Developer’s Guide
	Technical Overview

	Documentation

	pypi package

	Continuous Integration

	Browser User Interface (BUI)

	Command Line Interface

	Parameters and Models

	Reference Documentation
	Core module

	neurodynlib module

	Configuration module

	BUI module

	visualization module

Indices and tables

	Index

	Module Index

	Search Page

Introduction

	Using the BSP interface

	Installing locally

	Neurodynlib

	Visualization in ViSimpl

Using the BSP interface

CxSystem2 can be used on the Human Brain Project
Brain Simulation Platform (BSP) [https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/],
which is a collaborative web platform designed for reconstruction and simulation of brain models.
To use CxSystem2 on the BSP, you only need an account for the BSP and a compatible web browser (Firefox or Chrome).
This link provides information on acquiring an account to the BSP [https://www.humanbrainproject.eu/en/hbp-platforms/getting-access/].

After you have used CxSystem2 on the BSP and want to use it for more complex simulations, we recommend that you
install it locally.

Access the BSP collaboratory [https://collab.humanbrainproject.eu/].

Installing locally

CxSystem2 can be installed locally using pip. The local version allows running simulations via a browser
user interface (BUI) or from command line. Simulations can also be sent via ssh to clusters that use the SLURM workload manager.

To install CxSystem2, please follow the instructions on
our GitHub page [https://github.com/VisualNeuroscience-UH/CxSystem2].

Neurodynlib

Neurodynlib is a submodule that contains all the point neuron models included in CxSystem2. It can be used independently of CxSystem2,
for example, inside a Jupyter notebook to explore the behaviour of single neuron models or small networks.
Neurodynlib grew out of the need to understand the behaviour of neuron models before incorporating them
into a larger network.

Neurodynlib is based on the exercise code repository [http://github.com/EPFL-LCN/neuronaldynamics-exercises] accompanying the book
Neuronal Dynamics [http://neuronaldynamics.epfl.ch].

The book is also published in print:
Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski.
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.

We provide a short tutorial on Neurodynlib as Jupyter Notebooks.

Available neuron models

The currently supported point neuron models are:

LIF: Leaky integrate-and-fire.

EIF: Exponential integrate-and-fire.

ADEX: Adaptive exponential integrate-and-fire.

IZHIKEVICH: Izhikevich model.

LIFASC: Leaky integrate-and-fire with after-spike currents.

In addition, there is a multicompartmental neuron type (PC, pyramidal cell) that follows exponential integrate-and-fire
dynamics.

Available receptor models

The currently supported receptor models are:

SIMPLE_E: Excitatory conductance with exponential decay.

SIMPLE_I: Inhibitory conductance with exponential decay.

SIMPLE_E_NMDA: AMPA and NMDA receptors.

SIMPLE_I_GABAB: GABA-A and GABA-B receptors.

E_ALPHA: Excitatory alpha synapse.

I_ALPHA: Inhibitory alpha synapse.

Visualization in ViSimpl

[image: Screenshot of ViSimpl]
Simulation results from CxSystem2 and the 3D structure of the model can be visualized using ViSimpl, a 3D particle-based rendering tool developed by
the GMRV Lab [http://gmrv.es/gmrvvis/]. Currently only spike data can be visualized using this tool.

More information on ViSimpl and binaries for download (currently only for Linux and MacOS) are available
here [http://gmrv.es/gmrvvis/visimpl/]. Note that the .AppImage binary is for Linux and the .dmg binary is for macOS.

Tutorials

TODO: Running an example, Visualizing results, Constructing a new model, Using neurodynlib

	1 - Running an example simulation

	2 - Basic visualization

	3 - Building a new model

	4 - Using neurodynlib

1 - Running an example simulation

This is the main window of CxSystem2 you should see after opening the application in the Brain Simulation Platform
(the window for the local browser user interface is similar):

[image: CxSystem2 main window]
The top panel consists of three rows of buttons. The topmost one has the Home and Help buttons as well as buttons
for exporting and importing configuration files. The row in the middle has buttons for viewing console output and
for managing files. The last row is mainly for building the network and configuring the simulation. The Simulate
in the top-right corner launches the simulation(s).

On lower right part of the browser, you can see a small windows entitled “Status of Simulations”. As the name implies, this
window will print out information about the simulation you’ve submitted the request for. You can temporarily close this
window and open it later on by clicking on the “Simulation Status” button on the top menu.

Now, to run a simple example, let’s open up the Examples tab:

[image: Example networks]
Under the Examples tab you can find networks of different complexity, the simplest ones being on the top. We plan to provide
more examples and our scientific contributions here in the future (you’re also free to contribute).

Now, pick the “COBA-EIF” example. After you have loaded the example, hit the Simulate button without changing anything
in the configurations. After a few seconds you should get a window saying that the simulation has been sent to the server.

To see how your simulation is progressing, click on the Simulations Output button:

[image: Console output]
This shows you the console output and it allows you to follow the progress of your simulations.
(If you are running CxSystem2 locally, you can see the output in the terminal window where the server is running.)

After a few minutes, all the simulations should be ready. You should be able to see the resulting
data files by clicking the Show Workspace button:

[image: Workspace contents]
Hooray! You have run your first simulations! See the next section for visualizing the results.

2 - Basic visualization

Let’s continue by visualizing the spike data we created in Tutorial 1:

[image: Workspace contents]
We actually did a small parameter search for the parameter k, which in this configuration means the relative weight
of inhibitory synapses. Thus we have 4 data files containing spikes (plus the metadata file).

Now, from the workspace view (above), copy the timestamp of one of the simulation files (here 20191211_1106288).
Then open up the Rasterplot tab:

[image: Rasterplot menu]
Fill in the simulation name (cobaeif) to the first text field and paste the timestamp to the second field.
Leave the sampling rate as 1%: the current plotting method will create pdfs that are heavy to render if some of your
simulations have a lot of spikes. (This visualization tool is intended only as a simple screening tool.)

When you have filled in the fields, hit the Visualize button. After a few seconds, a PDF with the spike data
should open up:

[image: Rasterplots of simulations]
When you scroll down the pdf, you can see that there are four pages corresponding to the four simulation files.
(In networks with more neuron groups to visualize, a single simulation will occupy multiple pages.) You can see that
with k=1,2,3 (not that much inhibition) there is little variation in spike dynamics, but with k=5 the activity seems
more rhythmic.

If you have CxSystem2 installed locally, you can download the simulation data to visualize it in
ViSimpl. Just click on the Download workspace button. After the download has finished, open up a
terminal window, unpack the file and use the cxvisualize command:

(CX2) henhok@taz:~: cd Downloads
(CX2) henhok@taz:~/Downloads$ tar xvfz workspace.tar.gz
304441/
304441/cxoutput.out
304441/cobaeif/
304441/cobaeif/cobaeif_results_20191211_1106288_k1.gz
304441/cobaeif/cobaeif_results_20191211_1106288_k2.gz
304441/cobaeif/cobaeif_results_20191211_1106288_k3.gz
304441/cobaeif/cobaeif_results_20191211_1106288_k5.gz
(CX2) henhok@taz:~/Downloads$ cxvisualize 304441/cobaeif/cobaeif_results_20191211_1106288_k5.gz
Setting OpenGL context to 4.4
...

If the ViSimpl binary is available in the system path, the cxvisualize command should lauch
ViSimpl with the simulation data (for k=5 in this case):

[image: CxSystem2 main window]
Congratulations! If you want to do your own visualizations on the spike data using Python,
please see the user’s guide.

3 - Building a new model

Let’s then build a new network composed of adaptive exponential integrate-and-fire neurons.
First, open the Template network under the Examples tab.

Let’s first set the general simulation parameters. You don’t need to worry about many of the things here for now.
Just change the simulation_title from the template title. Also, check that init_vms
(we want to randomize initial membrane voltages) and multidimension_array_run are checked
(we want to do a parameter search). Run_in_cluster should be left unchecked. Finally set
the runtime parameter (topmost) to 3*second and device to Cython.

Now, click the NeuronGroups tab. In the template config, there is one excitatory and one inhibitory population,
and this is the same setup we will be using here. Let’s however increase the neuron counts a bit.
Pick the spiny stellate (SS) group and change the number of neurons to 10000:

[image: Specifying neuron group parameters]
Also change the number of background inputs to 1000. For the basket cell (BC) group, change the number of neurons to
2500 and the number of background inputs to 1000.

Now, let’s add some connections. We need to remember here that neuron index 1 corresponds to the excitatory group and
neuron index 2 correspond to the inhibitory group. Let’s leave the first connection S0 as it is
(this is a connection from the input group). Now open up S1 and from there change the number of synapses per connection
(parameter n) to 1. Let’s leave the connection probability (parameter p) at 10% (0.1).

Let’s add the rest of the connections. Click the +Synapse button. Then set the parameters for S2: we want this to
be an excitatory connection (set receptor to ge) from the excitatory group to itself
(set pre_syn_idx to 1 and post_syn_idx to 1).
Set p to 0.1 and n to 1 again. The rest of the parameters can be left as they are by default.

Now add the inhibitory connections. Click the +Synapse button again. Set the parameters for S3: we want this to
be an inhibitory connection (set receptor to gi) from the inhibitory group to the
excitatory group (set pre_syn_idx to 2 and post_syn_idx to 1). Set p to 0.1 and
n to 1 again.
Finally, add an inhibitory self-connection with the same p and n.
You should have a collection of synapses like this:

[image: Final connections]
We’re almost there… but we still need to set parameters under the Physiology tab. Because we want to simulate
AdEx neurons you need to change the neuron_model parameter to 'ADEX'. (Note that you need to have
single- or double-quotes around the model name – otherwise CxSystem will think you are referring to a constant in the
configuration file.) Check that excitation_model is 'SIMPLE_E' and
inhibition_model is 'SIMPLE_I'
(exponentially decaying conductance for excitatory and inhibitory receptors). There are some parameters that are
not used in this simulation (like pc_excitation_model which is for pyramidal cells), but you don’t need to delete
these parameters.

A common scheme to set connection weights is to set weights to excitatory connections and then specify the
inhibitory connections with respect to them. Thus, in this template, there are global variables for each of these:
J (E-to-E connections), J_I (E-to-I connections), k (ratio of I-E connection weight
with respect to E-to-E connection weight) and k_I (ratio of I-to-I connection weight
with respect to E-to-I connection weight). We will only be needing one excitatory weight and
one inhibitory weight. Set J to 0.5*nS. Then set J_I to J and k_I to k:

[image: Modifying parameters in the Physiology config]
Can you find where the time constants for the receptors are? They are under receptor_taus
(the letter tau often signifies a time constant). Change tau_e to 5*ms and tau_i to 10*ms.

Now we still need to change the neuron model parameters. Go to the bottom of the list of parameters and
open up the BC dictionary. Inside you’ll find parameters for the BC neuron, which in the template are EIF neurons.
We need to add some parameters to parametrize AdEx neurons. First, however, change the existing parameters:
C to 59*pF, gL to 2.9*nS, EL to -62*mV, VT to -42*mV, DeltaT to 3*mV and
V_res to -54*mV. Then scroll down to the bottom and click the +row button three times.
Then in the new empty fields write
down the new parameter values: a = 1.8*nS, b = 61*pA and tau_w = 16*ms.
Finally, change the V_init_min parameter to EL-5*mV and V_init_max to EL+5*mV.

Once you have done all the changes to the BC neuron group, do the same changes to the SS group.

Now we should have a working simulation config.
But what’s the parameter search we wanted to do? We want to see how changing background input rate and changing the
ratio of inhibition-to-excitation changes changes network behavior. There are two notations for parameter search in CxSystem. The first notation is
{start|end|step} which has a similar behavior as numpy.arange(start,end,step). For example, setting a parameter to
{0|1|0.2} would create an array of following values: 0.0, 0.2, 0.4, 0.6, 0.8. The next notation is
{value1 & value2 & value3 & ... } where the user can add multiple desired values manually. For example, setting a parameter
to { 0 & 1 & 100 & 9 } will create an array of following values: 0, 1 , 100, 9. Note that these values can be used at the same time.
As an example, consider we want to add search ranges to the parameters background_rate and k.
Here we use the curly brace syntax: set background_rate as {0|5|2}*Hz (corresponding to 0, 2, 4 Hz) and
k as {1 & 3 & 5 & 7}. Now you have defined a 3x4 parameter search of following values:

	background_rate

	0

	0

	0

	0

	2

	2

	2

	2

	4

	4

	4

	4

	k

	1

	3

	5

	7

	1

	3

	5

	7

	1

	3

	5

	7

Finally you can hit the Simulate button. When you simulate this on a single CPU core (number_of_process is 1)
it should take 30 min - 1 hour to finish. Once the simulation is finished you should be able to see 12 files in your
workspace:

my_first_model_results_20191216_0901136_background_rate0H_k1.gz
my_first_model_results_20191216_0901136_background_rate0H_k3.gz
my_first_model_results_20191216_0901136_background_rate0H_k5.gz
my_first_model_results_20191216_0901136_background_rate0H_k7.gz
my_first_model_results_20191216_0901136_background_rate2H_k1.gz
my_first_model_results_20191216_0901136_background_rate2H_k3.gz
my_first_model_results_20191216_0901136_background_rate2H_k5.gz
my_first_model_results_20191216_0901136_background_rate2H_k7.gz
my_first_model_results_20191216_0901136_background_rate4H_k1.gz
my_first_model_results_20191216_0901136_background_rate4H_k3.gz
my_first_model_results_20191216_0901136_background_rate4H_k5.gz
my_first_model_results_20191216_0901136_background_rate4H_k7.gz

Now you can use the techniques described in Tutorial 3 to visualize the results!

4 - Using neurodynlib

Neurodynlib tutorials are composed as Jupyter Notebooks. You can find the notebooks in
the Brain Simulation Platform [https://collab.humanbrainproject.eu/#/collab/67332/nav/457373]. If you want to
play around with the models, copy the notebooks to your own collab.

If you have installed CxSystem2 locally, the tutorial notebooks are also available in the cxsystem2.neurodynlib
submodule under the folder tutorial. In the terminal, write

cd /path_to_CxSystem2/cxsystem2/neurodynlib/tutorial/
jupyter notebook

If you don’t have jupyter, you can install it by typing pip install jupyter.

User’s guide

	Anatomy & simulation configuration
	Simulation run parameters

	External input

	Neuron groups

	Connections

	Monitors

	Physiology configuration
	General model parameters

	Neuron type-specific parameters

	Connection- and synapse-type specific parameters

	Other simulation parameters

	Batch simulations

	Running on cluster
	Setting up the environment

	Transferring the Results

	Visualization
	rasterplot-pdf

	ViSimpl

	Custom visualizations

	Command-line interface
	cxsystem2

	cxvisualize

	cxconfig

	cxcluster

	cxserver

	Running the BUI locally

Visualization
Command-line interface
Running a local server

Anatomy & simulation configuration

This configuration consists of

	Simulation run parameters

	External inputs

	Neuron groups (cell types)

	Connections (pathways)

In the browser user interface these are divided into separate tabs, while in the
csv file interface, they are all located in the same “anatomy configuration file”. This configuration includes
also recording monitors for state variables.

If you are using the csv file interface to construct your model, please start from the anatomy and physiology
template csv files provided. If you still have trouble defining your model, please see
CxSystem1 documentation [https://cxsystem.readthedocs.io/en/master/] or contact us.

Simulation run parameters

The necessary parameters for running simulations locally are:

	Simulation

	runtime{int*unit}: Sets the duration of the simulation, e.g. 200*ms.

device{Python,Cython,Cpp,GeNN}: Sets the device for Brian2 code generation.

sys_mode{local, expanded}: The system can be run in two modes: local and expanded mode. Expanded mode applies distance
dependence of connection probabilities.

scale{int}: Relative area of cortical surface.

grid_radius{float*unit}: Sets the radius of the 2D circle from which the x-y coordinates are randomized, e.g. 210*um.

min_distance{float*unit}: Sets the minimum distance between neurons inside single layer, e.g. 1*um.

workspace_path{string}: The main working directory of CxSystem; other paths are given relative to this path.

simulation_title{string}: Title for the current batch of simulations.

compression_method{gzip,bzip2,pickle}: Data compression method.

import_connections_from: Path and filename from where connections with synaptic weights are imported (relative to workspace path).

number_of_process: Number of CPU cores to use in parallel. For array runs only. A single simulation cannot be run in parallel.

default_clock: Simulation time step (e.g. 0.1*ms).

trials_per_config{int}: Number of trials for each set of parameters.

init_vms{True, False}: If True, randomize initial membrane voltages between V_init_min and V_init_max. If False, the initial membrane voltage is set as V_init.

load_positions_only{True, False}: Import neuron positions from connectivity file but randomize connections.

benchmark{True, False}: Only for development. Needs modified copy of brian2 library.

save_input_video{True, False}: Defines whether the generated video input is to be saved or not. This is essential in case the users wants to use the identical input on different runs, so the input can be saved by setting this to 1 and used later.

multidimension_array_run{True, False}: Defines whether the array run is multi-dimensional or one-dimensional. In one-dimensional array run, each set of parameters is run separately, while the other set is fixed. In multidimensional run, the full matrix of parameter combinations are run.

profiling{True, False} Defines whether CxSystem should report the benchmark using the built-in Brian profiler.

run_in_cluster{True, False} Run the simulation on a cluster.

If you want to run simulations on a cluster, you will also need to define:

	Simulation

	cluster_job_file_path{string}: Absolute path and filename of the local batch file. Slurm example provided.

cluster_number_of_nodes{int}: Number of nodes to be employed on the HPC server.

cluster_address{string}: Address of the HPC server (e.g. daint.cscs.ch).

cluster_login_node{string}: Address of the login node in case there is one (e.g. ela.cscs.ch).

cluster_username{string}: Username on the HPC system.

cluster_workspace{string}: Workspace path on the HPC server.

External input

Currently, three types of inputs can be used, namely VPM (referring to nucleus ventralis posteromedialis; produces synchronous spikes), Video, and spikes. Note that external inputs use common indexing with the neuron groups. We recommend
using the index 0 for the input group and indexing neuron groups from 1.

	VPM

	idx{int}: Index of the neuron group.

type{VPM}:

number_of_neurons{int}: number of thalamocortical fibers.

radius{float*unit}: Total radius of all thalamocortical fibers, e.g. 60*um.

spike_times{float*unit}: stimulation spike times, e.g. [1.0 3.0]*ms means input spikes at 1.0 and 3.0 ms.

net_center: defines the center of the thalamocortical fibers in complex coordinates float+floatj.

monitors: Monitors for recording spikes or state variables. More information on monitors

	Video

	idx{int}: Index of the NeuronGroup().

type: videos

path: relative path to the input .mat file.

[freq]

[monitors]

	spikes

	idx{int}: Index of the NeuronGroup().

type: spikes

input_spikes_filename: path to the spike file.

[monitors]

This is an example of defining a video input for the system:

	row_type

	idx

	type

	path

	freq

	monitors

	IN

	0

	video

	./V1_input_layer.mat

	190*Hz

	[Sp]

In this example an input NeuronGroup() with index 0 is created based on the V1_input_layer_2015_10_30_11_7_31.mat file with a frequency of 190*Hz and a SpikeMonitor() is set on it.
Here’s another example for VPM input for the system:

	row_type

	idx

	type

	number_of_neurons

	radius

	spike_times

	net_center

	monitors

	IN

	0

	VPM

	60

	92*um

	[0.5]*second

	–

	[Sp]

Neuron groups

Neuron groups (cell types) are defined using the following parameters. Note that biophysical parameters of the
corresponding neuron groups are defined in the Physiology configuration. If you add a subtype,
you need to add a corresponding entry to the physiology configuration file.

There are five hard-coded (neocortical) cell types in CxSystem2. The two excitatory cell types are spiny stellate (SS) and
PC (pyramidal cell). The three inhibitory cell types are basket cell (BC), Martinotti cell (MC) and
L1 inhibitory cell (L1i). The user can easily define subtypes, e.g. L4_MC. Subtypes can have arbitrary names (e.g. MyFavouriteBasketCellType, L5_LBC).

	NeuronGroups

	idx{int}: Running index of the neuron group.

number_of_neurons{int}: Number of neurons.

neuron_type{L1i,PC,BC,MC,SS}: Neuron type (one of the hard-coded types).

neuron_subtype{string}: Neuron subtype (can be an arbitrary string, or – if no subtype is needed).

layer_idx: Layer where the neuron population is located (layer 2/3 = 2). For PCs, please use the [X->Y] syntax, where
X is soma layer and Y is the most distal apical compartment. Note that PC the [X->Y] syntax creates X minus Y compartments above soma layer.
E.g. for [4->1], the PC will have 3 compartments at soma layer [basal (b), soma (s) and apical0 (a)] and 3 apical dendrite
compartments above soma layer [a1 at layer idx 3, a2 at layer idx 2 and a3 at layer idx 1]

net_center{float+floatj}: Center point of the neuron population in complex coordinates (e.g. 0+0j).

monitors: Monitors for recording spikes and neuron state variables, e.g. [Sp]. More information on monitors

n_background_inputs{int}: Number of excitatory background synapses.

n_background_inhibition{int}: Number of inhibitory background synapses.

Connections

Connections between neuron groups are defined using the following parameters. We currently have the following
synapse types: Fixed, Depressing and Facilitating. Short-term plasticity (STP) parameters of the
depressing and facilitating synapses are defined in the Physiology configuration.

	Connections

	receptor{ge,gi}: Sets whether the connection is excitatory or inhibitory.

pre_syn_idx{int}: Presynaptic neuron group index.

post_syn_idx: Postsynaptic neuron group index. When targeting a PC, please use the X[C]Y syntax, where X is the neuron group index and Y is the compartment index. See below for an example.

syn_type: Synapse model.

p{float<=1}: Connection probability.

n{int}: Number of synapses per connection.

monitors: Monitors for synaptic state variables. More information on monitors

load_connection{0,1}: Flag for loading the connection and its parameters.

save_connection{0,1}: Flag for saving the connection and its parameters.

custom_weight{float*unit}: Synaptic weight for this specific connection, e.g. 1.5*nS. Overrides more general weight definitions.

spatial_decay{float,[ij],float[ij]}: When sys_mode is expanded, provides lambda (spatial decay parameter) for weight * p * exp(-lambda * d); d is the distance between neurons.

If the postsynaptic neuron is a multicompartmental neuron, the target compartment must be defined using the [C] tag.
Compartmental indexing starts from zero at the soma layer and increases towards the distal apical dendrite. The soma, and the basal
dendrites and the first apical dendrite compartment are located in the soma layer are distinguished with s, b and a tags, respectively.

For example, if you have PC neuron with a layer_idx of [6->1] (soma in layer 6 and apical dendrite extending up to layer 1),
the compartmental indexing is:

	Comp. Index

	Compartment type

	Layer

	4

	Apical dendrite (distal)

	1

	3

	Apical dendrite

	2/3

	2

	Apical dendrite

	4

	1

	Apical dendrite

	5

	0a

	Apical dendrite (proximal)

	6

	0s

	Soma

	6

	0b

	Basal dendrites

	6

Thus, if you want target the most distal apical compartment of this group, the post_syn_idx should be
neuron_group_index[C]4.

Monitors

Both neuron groups and synapses can be monitored, i.e. their state variables can be recorded and stored for
analysis. Most commonly users only need the spikes. Note that continuous state variables (like the membrane
voltage) are recorded with the same resolution as the time step, and thus large networks can quickly create
gigabytes of data.

The following tags can be used to define a specific monitor:

	[Sp]:

	This tag defines a [Sp] ike monitor.

	[St]:

	This tag defines a [St] ate monitor.

You can combine a spike monitor with multiple state monitors like this (note the space between [Sp] and [St]):

[Sp] [St]ge_soma+gi_soma+vm.

By default all neurons/synapses are being monitored. If you want to monitor specific neurons (or synapses),
you should use the [rec] tag followed by indices of interest. For example, to monitor the membrane voltage (vm)
of the first 20 neurons (in the group) and the excitatory conductance (ge_soma) of every evenly indexed neuron between 0 and 100,
you would write:

[St]vm[rec](0-20)+ge_soma[rec](0-100-2)

Often you want to assign a specific type of monitor to several consecutive neuron groups (or connections). In this case, the monitor can be defined for the first neuron group and a --> tag should be written at the end of the line. --> indicates that all the consecutive neuron groups should be assigned with the same monitor. For finishing this assignment, a <-- symbol should be put at the last target line of interest. Note that it is possible to overwrite the defined monitors of some lines between the --> and <-- symbols simply by adding the monitor of the interest.

	G1

	[St]ge_soma –>

	G2

	–

	G3

	

	G4

	[Sp]

	G5

	<–

In this example, a state monitor over ge_soma is assigned to neuron groups 1, 3 and 5 by using the --> and <-- tags. For the second group, the usage of default state monitor is over-written by using the -- keyword, indicating that the second line is not monitored. For the fourth group, however, the default monitor is overwritten by a spike monitor.

Physiology configuration

The physiological configuration consists of

	General model parameters

	Neuron-type specific parameters

	Connection- and synapse-type specific parameters

	Other simulation parameters

The physiology configuration consists of constants (variable-values) and dictionaries (variable-key-values).

There are five hard-coded neuron types in CxSystem2 (two excitatory, SS and PC; three inhibitory, BC, MC and L1i),
but the user can easily define subtypes, e.g. L4_MC. Subtypes can have arbitrary names (e.g. MyFavouriteBasketCellType, L5_LBC).
Each ‘model’ refers to Brian equations, which are explained in the Neurodynlib section.
Advanced users are able to add new neuron types, including new membrane equation models. See the Developer’s Guide.

General model parameters

General model parameters affect all neurons and synapses.
They include the point neuron model, compartmental PC neuron model, receptor models, receptor weights and background noise rates.
Note that the model names must be surrounded by single-quotes.

These parameters are included in the example configuration files, including some short explanations in comments.

The parameters are:

	Physiology

	model_variation{0,1}: This should be 1. Value 0 is only for backwards compatibility, i.e. old models that use equations hard-coded in CxSystem1.

neuron_model{'string'}: Specifies which neuron model to use for point neurons (other cells than PCs). Available neuron models.

excitation_model{'string'}: Specifies the model for excitatory receptors in point neurons. Available receptor models.

inhibition_model{'string'}: Specifies the model for inhibitory receptors in point neurons. Available receptor models.

pc_excitation_model{'string'}: Specifies the model for excitatory receptors in pyramidal cells. Available receptor models.

pc_inhibition_model{'string'}: Specifies the model for inhibitory receptors in pyramidal cells. Available receptor models.

background_rate{float*Hz}: Sets the rate for excitatory background synapses (Poisson-distributed). Receptors will be modeled as excitation_model.

background_rate_inhibition{float*Hz}: Sets the rate for inhibitory background synapses (Poisson-distributed). Receptors will be modeled as inhibition_model.

background_E_E_weight{float*unit}: Weight of excitatory-to-excitatory synapses.

background_E_I_weight{float*unit}: Weight of excitatory-to-excitatory synapses.

background_I_E_weight{float*unit}: Weight of inhibitory-to-excitatory synapses.

background_I_I_weight{float*unit}: Weight of inhibitory-to-inhibitory synapses.

Neuron type-specific parameters

Neuron type-specific parameters are given as dictionaries. Subtype-specific parameters (e.g. L23_MC, L4_MC) will override
parameters for the hard-coded types (MC). Parameter names must match those defined in neurodynlib.
For example, to define parameters for BC neurons that are modelled as exponential
integrate-and-fire (EIF) neurons, you would write:

	BC

	C

	100 * pF

	
	gL

	10 * nS

	
	EL

	-70 * mV

	
	VT

	-40 * mV

	
	DeltaT

	2 * mV

	
	Ee

	0 * mV

	
	Ei

	-75 * mV

	
	tau_e

	3 * ms

	
	tau_i

	8 * ms

	
	V_res

	VT - 4 * mV

	
	Vcut

	VT + 5*DeltaT

	
	V_init_min

	EL

	
	V_init_max

	VT

This would define a general basket cell type. You could then continue by defining parameters for L23_NBC (L2/3 nest
basket cell) and setting the neuron_subtype as L23_NBC for the corresponding group in the
Anatomy configuration.

As shown in the example, you can refer to parameters (and do computations using them!) defined earlier in the Physiology configuration.

For pyramidal cell type (PC) you have additional parameters:

	PC

	Cm

	1.0 * ufarad * cm ** -2

	
	Area_tot_pyram

	10000 * um**2

	
	fract_areas

	{3: array([0.58, 0.052, 0.20, 0.15, 0.01, 0.01])}

	
	Ra

	[100,100,150,150,150] * Mohm

	
	spine_factor

	2

Here, capacitance is defined per area unit, and total area of the PC is defined. The fract_areas provide the
area fractions for each compartment as follows {N apical dendrite compartments above soma layer :
array([basal_dendr, soma, apical d comp 0 at soma layer, a1 at the 1st-, a2 at the 2nd-, a3 at the 3rd layer above soma])}
Ra provides the resistances between aforementioned compartments, thus len(Ra) = len(fract_areas array) - 1. The spine factor
provides multiplier for capacitance for accounting the membrane surface addition by the dendritic spines.

We also use rheobase parameter to allow tonic current injections in relation to rheobase.

Connection- and synapse-type specific parameters

Connection weights and connections delays are also given as dictionaries (cw and delay, respectively).
These are given with reference to the hard-coded cell types. Pathway-specific connection weights can be set in
the anatomy configuration using the custom_weight parameter. If there is no custom_weight defined,
then values in the cw dictionary will be used. Currently there is no way to define pathway- or neuron
subtype-specific delays.

These dictionaries are included in the example configuration files. Even though you might not have all the
hard-coded cell types in your model, you don’t need to delete the redundant lines.

Other simulation parameters

There are some additional parameters that are sometimes required. The most important are parameters related to
short-term plasticity (STP) and to connection weight scaling by extracellular calcium concentration.
To see how these are
implemented, please see Methods in Hokkanen et al. 2019 Neural Computation [https://researchportal.helsinki.fi/files/126265461/Hokkanen_2019_NECO.pdf].

For depressing synapses, you need the following parameters:

	STP-Depressing

	U_E{float}: Utilization factor for depressing excitatory synapses.

U_I{float}: Utilization factor for depressing inhibitory synapses.

tau_d{float*unit}: Recovery time constant (from depression).

For facilitating synapses:

	STP-Facilitating

	U_f{float}: Utilization increment for facilitating synapses.

tau_f{float*unit}: Facilitation decay time constant.

tau_fd{float*unit}: Recovery time constant for facilitating synapses.

If you want to scale synapse weights with respect to extracellular calcium level, you should define the following
parameters:

	calcium

	calcium_concentration{float}: Calcium concentration in mM. If set to 2.0, there is no scaling.

flag_background_calcium_scaling{0,1}: Sets whether background inputs are also scaled with respect to calcium level.

Batch simulations

Array run (Parallel runs) can be set using the curly braces around the target parameter. There are two special characters
indicating either an explicit vector of values (ampersand, &) or numpy style range with step as the third value (vertical bar, |).

For instance, to run 3 separate simulationswith scale=1, scale=2 and scale=3, the parameter scale should be set to:

	…

	scale

	…

	…

	{1&2&3}

	…

This parallel run will use the number of processes (threads) that is set using the number_of_process parameter, e.g. if number_of_process=3, then each of the 3 simulations runs in their own threads. However, if number_of_process=2, two processes run first the simulation for scale=1, and scale=2. The third simulation with scale=3 will start when the first of the two simulations are completed.

The array_run could also be set in range with defined step:

	…

	scale

	…

	…

	{1|5|1}

	…

This parallel run will use four simulations with scale=1, scale=2, scale=3 and scale=4. Note the numpy style vector excluding the last index.

When two or more parameters are set to use array runs, CxSystem can run the parallel runs either as multi-dimensional runs or independent runs. For example: suppose a simulation is to be performed for scale {1&2&3} with init_vms set to {0,1}. If multidimension_array_run flag is set to 1, the following 6 simulations will be run separately:

{scale=1, init_vms=0}, {scale=1, init_vms=1}, {scale=2, init_vms=0}, {scale=2, init_vms=1}, {scale=3, init_vms=0}, {scale=3, init_vms=1}

When multidimension_array_run flag is set to 0, however, the array_run pattern is different and 5 simulations will be run in parallel:

{scale=1}, {scale=2}, {scale=3}, {init_vms=0}, {init_vms=1}

One might want to run each of the parallel simulations several times, e.g. to observe an effect of random initialization on a particular parameter set.
For this purpose the trials_per_config should be set to the desired number of runs per configuration.

Running on cluster

In Cluster Run mode, CxSystem connects to a connection node of a cluster via SSH and runs instances of array run
on pre-defined number of nodes in the cluster. Currently Cluster Run is tested on Taito supercluster [https://research.csc.fi/taito-supercluster] at Finnish IT Center for Science that employs Slurm workload manager.
However, with a slight modification to the Slurm template file, one can use the cluster run on other types of workload
manager systems, e.g. Torque.

Setting up the environment

We assume that you are familiar with and have access to and available resources for a computing cluster, and that your
cluster accepts ssh connections.
Before submitting the batch jobs to the cluster with CxSystem, the cluster environment should be properly set up.
This includes finding/copying/assigning the python environment in the Slurm file. In case you are using
a custom branch you should as well clone and checkout to that branch otherwise CxSystem will clone itself and try to
spawn the processes using the master branch. The parameters that are used for cluster run are as follows:

	run_in_cluster

	1

which triggers the cluster run.

	cluster_job_file_path

	./csc_taito.job

This parameter defines the address of the template workload management system file. In this case the a template
for Slurm system is made available in the Github page which can be used for any cluster that utilizes the Slurm.
In case the cluster of choice uses another workload management system, the template file should be specified accordingly.

	cluster_number_of_nodes

	10

Defines how many nodes will be requested from the cluster to CxSystem.

Important Note: the number of nodes in the cluster workload management system file should be set to 1
and instead the number of nodes should be defined here. The reason for this is that CxSystem submits
separate jobs to each node in the cluster. This has some advantages, including less waiting time, and some disadvantages, complexity.

	cluster_address

	taito.csc.fi

Defines the URL of the cluster.

	cluster_username

	johnsmith

Defines the username for the SSH connection.

	remote_repo_path

	~/CxSystem

Defines the path of the CxSystem in the connection node of the cluster. In this example ~/CxSystem indicates that the CxSystem
clone exists in the home folder, i.e. ~/, in the connection node. If the repository clone does not exist there, then the latest
version will be cloned and used. As mentioned earlier, in case the user is using a specific branch, CxSystem should be cloned and checked
out manually. Otherwise the user can rely on CxSystem cloning itself in the connection node.

	cluster_workspace

	/Users/cxuser/results

Defines the folder in which the results will be copied. In this example, a new folder results will be created in
the /Users/cxuser/ folder and the results will be saved there. Note that cluster_workspace must be an absolute
path and in case the results reside under the home folder, it’s path must as well be explicitly defined.

Transferring the Results

Usually clusters have an option to send users an email when the job is finished and users can transfer the results to their local machine.
CxSystem can do this automatically: When a batch job is submitted, besides generating several Slurm files, CxSystem creates a _tmp_checker_data
file. This file, which contains information about the current cluster batch job, will be used to check the status of the results in the cluster.
If the results are ready, they will be copied to the local result folder defined using output_path_and_filename attribute in the
network and model configuration file. This task can be done by directly running cluster_run.py.

Visualization

Visualization of simulation data often requires custom code, but we provide two ways to get a
general idea of the simulated spike data.

rasterplot-pdf

Rasterplot-pdf allows you to create a pdf file with rasterplots of a batch of simulations.
You can run it using the cxvisualize command (more on the command).
For example,
to create raster plots of all simulations run on 13 December 2019 at 13:37 in a particular directory,
you can write

cxvisualize --rasterplot-pdf ~/CxWorkspace/my_simulation/ 20191213_1337

This creates a pdf file with the specified timestamp in the same directory.
Note that this script is very basic and is intended only for screening that there is not a
simple bug in the simulation configuration.

ViSimpl

ViSimpl allows you to visualize the time course and geometry of spiking in a single simulation. First, download the
ViSimpl binary [http://gmrv.es/gmrvvis/visimpl/] (the .AppImage binary is for Linux and the .dmg binary is for macOS).
Then put the ViSimpl binary in a directory that is located in your system path. Also, remove version
numbering from the binary and make it executable:

mv visimpl-0.1.4-x86_64.AppImage visimpl.AppImage
chmod +x visimpl.AppImage

After this you can visualize
CxSystem2 spike data in ViSimpl using the cxvisualize command:

cxvisualize ~/CxWorkspace/my_simulation/my_simulation_results.gz

This opens up the ViSimpl main screen. You should be able to rotate the circuit and “play” the simulation
without further configuration. To learn how you can customize the visualization, please see the
ViSimpl website [http://gmrv.es/gmrvvis/visimpl/].

Custom visualizations

Simulation data are stored in dictionaries in the results file. For example, to access spike data in a gzipped file,
you can write:

import zlib
import pickle

fi = open('my_simulation_results.gz', 'rb')
data_pickle = zlib.decompress(fi.read())
data = pickle.loads(data_pickle)

spike_data = data['spikes_all']
neuron_positions = data['positions_all]

After this, spikes are available in the spike_data dictionary indexed by neuron group names.
Then, for each
neuron group, you have a dictionary with arrays i (neuron index) and t (spike time).

Similarly, neuron positions are available in the neuron_positions dictionary containing two
subdictionaries: w_coord (cortical position) and z_coord (retinal position).
If you are not modelling the visual system, you can ignore the z_coord subdictionary.

Command-line interface

CxSystem2 has five commands associated with the main functionalities of CxSystem2. Each of this commands have descriptive help commands.

cxsystem2

This command can be used to run a simulation using anatomy and configuration files:

$ cxsystem2 -h
cxsystem2 -- a cortex simulation software

Usage:
 cxsystem2 (-h | --help)
 cxsystem2 -a ANATOMY_FILE -p PHYSIOLOGY_FILE
 cxsystem2 (-v | --version)

A cortex simulation framework called `CxSystem`.

Arguments:
 PORT port number on which the BUI server runs

Options:
 -h --help Show this screen
 -v --version Show current cxsystem version
 -a ANATOMY_FILE --anatomy=ANATOMY_FILE Sets the anatomy file path
 -p PHYSIOLOGY_FILE --physiology=PHYSIOLOGY_FILE Sets the physiology file path

Description:

 cxsystem2 -a ./anatomy.csv -p ./physiology.csv
 runs the cxsystem using the anatomy file called anatomy.csv and physiology file called physiology.csv

 cxsystem2 --anatomy ./anatomy.csv --physiology ./physiology.csv
 runs the cxsystem using the anatomy file called anatomy.csv and physiology file called physiology.csv

cxvisualize

This command can be used to visualize the result of a simualtion using ViSimpl (available here [https://gmrv.es/gmrvvis/visimpl/]
for download):

$ cxvisualize -h
cxvisualize -- cxsystem visualizer

Usage:
 cxvisualize (-h | --help)
 cxvisualize [-d | -c] FILEPATH
 cxvisualize --rasterplot-pdf FOLDERPATH TIMESTAMP [--sampling-rate SAMPLINGRATE]

A tool for visualizing `CxSystem` spike data in ViSimpl.

Arguments:
 FILENAME Path to results file
 FOLDERPATH Path to folder containing array run files
 TIMESTAMP Timestamp suffix of the arrayrun files
 SAMPLINGRATE Sampling rate for the rasterplots

Options:
 -h --help Show this screen
 --rasterplot-pdf Generate a rasterplot pdf for arrayrun
 -c --convert Convert results for use in ViSimpl
 -d --delete Delete ViSimpl-related files after visualization
 -s SAMPLINGRATE --sampling-rate=SAMPLINGRATE Sampling rate for raster plot (default is 1%)

Description:

 cxvisualize ./results.gz
 converts the results file into two CSVs and one JSON for ViSimpl, visualizes the result and does not remove the temp files
 (actual visualization: ./visimpl -csv results_structure.csv results_spikes.csv -se results_subsets.json)

 cxvisualize -d ./results.gz
 converts the results file into two CSVs and one JSON for ViSimpl, visualizes the result and remove the temp files

 cxvisualize -c ./results.gz
 converts the results file into two CSVs and one JSON for ViSimpl (no visualization)

 cxvisualize --rasterplot-pdf ./cobaeif 20191123_1353509
 Generates a pdf of rasterplots of all groups in the folder with 20191123_1353509 timestamp

 cxvisualize --rasterplot-pdf ./cobaeif 20191123_1353509 --sampling-rate=4%
 Generates a pdf of rasterplots of all groups in the folder with timestamp 20191123_1353509 and sampling rate or 4%

cxconfig

CxSystem2 supports both csv and json file formats for the anatomy and physiology configurations. cxconfig can be used
to convert the json configuration files to csv and vice versa:

$ cxconfig -h
cxconfig -- cxsystem config file converter

Usage:
 cxconfig (-h | --help)
 cxconfig FILEPATH

A configuration file converter for `CxSystem`.

Arguments:
 FILENAME Path to configuration file to convert

Options:
 -h --help Show this screen

Description:

 cxconfig ./sample_conf.json
 converts the file `sample_conf.json` in current directory to csv and saves it as `sample_conf.csv`

 cxconfig ./sample_conf.csv
 converts the file `sample_conf.csv` in current directory to csv and saves it as `sample_conf.json`

cxcluster

After submitting jobs to cluster, CxSystem stores the data corresponding to the job to a metadata file. To retrieve the results
when they are ready, you can use the cxcluster command as follows:

$ cxcluster -h
cxcluster -- cxsystem cluster result downloader

Usage:
 cxcluster (-h | --help)
 cxcluster META_FILE_PATH

Downloads result data of `CxSystem` from cluster.

Arguments:
 META_FILE_PATH Path to cluster run metadata file

Options:
 -h --help Show this screen

Description:

 cxcluster ./sample_meta.pkl
 Uses the information in the metadata file to download the results if ready, and otherwise wait for the results.
 User will be prompted for the remote password.

cxserver

You can use the cxserver command to run the browser user interface of the CxSystem2 in either http or https mode.
Note that running it in https mode requires oauth configurations for authentication:

$ cxserver -h
cxserver -- web server for cxsystem2

Usage:
 cxserver (-h | --help)
 cxserver [--port=PORT] [--no-browser]
 cxserver --https [-p PROVIDERID -c CLIENTID -r REDIRECTURI -a AUTHORIZATION] [--port=PORT] [--no-browser]
 cxserver --config -p PROVIDERID -c CLIENTID -r REDIRECTURI -a AUTHORIZATION
 cxserver --config -w WORKSPACEPATH
 cxserver --config -l LOGPATH

Web server for running the BUI for `cxsystem2`

Arguments:
 PORT port number on which the BUI server runs
 PROVIDERID provider id for OAuth2 client for authentication
 CLIENTID client id for OAuth2 client for authentication
 REDIRECTURI redirect url for OAuth2 client for authentication
 AUTHORIZATION authorization url for OAuth2 client for authentication
 WORKSPACEPATH path to the main workspace folder
 LOGPATH path to the log folder

Options:
 -h --help Show this screen
 -v --version Show current cxsystem version
 --https Run server with ssl certificate
 --port=PORT Runs the server on port PORT
 --config Rewrite the oauth config file with the new parameters
 --no-browser Do not open browser after running the server
 -p PROVIDERID --provider-id=PROVIDERID Sets the provider id
 -c CLIENTID --client-id=CLIENTID Sets the client id
 -r REDIRECTURI --redirect-uri=REDIRECTURI Sets the redirect url
 -a AUTHORIZATION --authorization=AUTHORIZATION Sets the authorization url
 -w WORKSPACE --workspace-path=WORKSPACE Sets the workspace path
 -l LOGPATH --log-path=LOGPATH Sets the log path

Description:

 cxserver
 runs the cxsystem2 server without SSL certificate on a random port

 cxserver --port=PORT
 runs the server on a specific port number PORT

 cxserver --https
 runs the cxsystem using the ssl certificate and other parameters previously saved in the configuraiton file using --config

 cxserver --config -p HBP -c f34780ff-7842-499c-8440-5777c28e360d -r https://127.0.0.1:4443 -a https://services.humanbrainproject.eu/oidc/authorize
 config the configuration yaml file with the new oauth parameters

 cxserver --config -w /cxworkspace
 config the configuration yaml file with the new workspace path

 cxserver --config -l /var/log/
 config the configuration yaml file with the new log path

Running the BUI locally

You can run CxSystem2 as a local server similar to the Jupyter notebook server.
This allows you to use the browser user interface (BUI) to run simulations locally or
launch jobs on a remote cluster.

Please read the instructions on installing CxSystem2 locally and on using
the cxserver command.

Developer’s Guide

This section section provides a brief guideline for potential contributors and researchers who need to
change the CxSystem2 code e.g. for adding new neuron or synapse types.

	Technical Overview

	Documentation

	pypi package

	Continuous Integration

	Browser User Interface (BUI)

	Command Line Interface

	Parameters and Models

Technical Overview

Selecting Python, C++ or GPU device

The device is selected in the model and network configuration file. Set the “device” to either Python, Cpp or GeNN (case insensitive).
The Cpp (C++) device is a safe bet for most applications. Python skips compilation, and may be best for minor systems or when devices run into
problems. GeNN may be beneficial for long non-array runs.

How the CxSystem works

The CxSystem starts by calling the main object cxsystem() in python interpreter. The configuration files are set either in the BUI, as command-line
arguments for cxsystem2 command or python interpreter after cxsystem() call, or at the end of cxsystem.py file.

One of the strengths of the CxSystem is the ability to dynamically compile the model. This bypasses the traditional way of hard coding much of the model which
would limit flexibility. This flexibility comes with some added complexity in the way the CxSystem builds the devices.

The implemented system employs the Brian2GeNN python module to generate GeNN (GPU enhanced Neuronal Network simulation environment) code for eventually running
the Brian2 codes on GeNN. Note that using the GeNN device, CxSystem (via GeNN) only employs one of the GPUs in the system and therefore cannot be used in cluster.
In order to understand how this system works, one should initially understand how Brian2GeNN limits Brian2. Most of the exclusions are presented in Brian2GeNN documentation [http://brian2genn.readthedocs.io/en/latest/introduction/exclusions.html]. Perhaps the most effective limitation is lack of support for using Multiple networks
in Brian2, i.e. only the magic network can be used. Using the magic network, only the “visible” objects, that are explicitly defined in the code will be collected.
In other words, any Brian2 object that is created in a custom class, will not be collected and will eventually raise an error. We have used two solutions to address
this issue, Syntax Bank and Global variables:

Creating a Syntax Bank

In this method, a syntax string is built for all Brian2 internal objects. These syntaxes are then run after the main object call. Suppose the cortical system object is named CX and a NeuronGroup() object called NG is created in a method inside the CX:

NG = NeuronGroup(1, eqs)

The NG will not be collected for magic network as it is inside a method of CX. However, we can anticipate a syntax for this neuron group and save it in a syntax bank attribute in CX:

syn1 = "NG = NeuronGroup(1, eqs)"
CX.syntax_bank = append(CX.syntax_bank, syn1)

All of the elements of this CX.syntax_bank* can then be iterated and run using the dynamic compiler, i.e. exec command. Note that all the sub objects of a syntax should be saved in syntax_bank as well. For instance, the last example will raise an error since eqs is not defined. Hence, before running the syn1, one should initially run the syntax for eqs object.

This method has a fundamental limitation: first, the syntax bank should run in a hierarchical manner. In previous example, the syntax for eqs should be run before syn1. Similarly, NeuronGroup() syntaxes should be run before Synapses() and synapses.connect() should be run after Synapses(). This process was manually coded into the main file for running the codes in a hierarchical manner, which we consider an untidy solution.

The syntax bank approach call for prefixes for object names. For instance, all of the NeuronGroup() have a prefix of NG.

For each neuron group, similar prefixes are also needed for variables such as:

	Number of neurons in each group: NN

	Equation: NE

	Threshold value: NT

	Reset value: NRes

	Refraction value: NRef

	Namespace: NS

Several prefixes are also demanded for Synapses() objects:

	Synaptic object: S

	Synaptic equation: SE

	Pre Synaptic group equation: SPre

	Post Synaptic group equation: SPost

	Namespace: SNS

	.connect(): SC

	weight: SW

And similar prefixes for monitors:

	Spike Monitors: SpMon

	State Monitors: StMon

Updating Globals()

Although mentioned as a dangerous method in the literature, updating the Globals() directly, is a practical approach in our case. This method uses aforementioned prefixes and corresponding variables. However, there is no need for the newly generated variables to wait in the syntax bank so to be run after CxSystem() module.
They can be implicitly executed while CxSystem is running and still magic network of Brian2 would be able to access them since they are in Globals(). Thus, the user does not have to face a manual syntax-executer outside of the main object call.

Accordingly, most of the exec commands inside the main object CxSystem() are creating the required variables and making them visible to magic network of Brian2 by updating the Globals(). In the following example, the NG0 is put into the Globals():

globals().update({'NG0':NG0})

Fig.1 illustrates the schematic of the cortical system internal component:

[image: ../_images/main_uml.png]

Fig.1 simplified UML diagram of the cortical system

Documentation

Visual Studio Code

We strongly suggest to use the vscode for updating the documentation. After
installing the vscode, add the following useful extensions:

	Code Spell Checker: used for spell checking

	reStructuredText: shows the format errors in the rst files

	rewrap: fix the line wrap of a paragraph with Alt+q shortcut

At this point all the errors that corresponds to reStructuredText format will
be shown in the vscode. After adding paragraphs, make sure to press Alt+q
so that the long lines are wrapped. You can also go to setting and setting the
Editor: Word Wrap to wordWrapColumn. However, you will still need to press
Alt+q to fix the wrap for rst format, otherwise reStructuredText
extension will underline the line as a long line (D001 error).

Building the documentation

We highly recommend building the documentation locally specially when
updating/adding docstrings. After changes to the documentation you can use
make html to rebuild the documentation and check the index.html to make
sure your changes are reflected correctly.

Sphinx is well documented, yet we will provide the essentials for improving the
documentation of the CxSystem. The documentation for reStructuredText is
available here [http://www.sphinx-doc.org/en/stable/rest.html].

To build the documentation locally you will need the sphinx and
sphinx-rtd-theme packages which are already included in the requirements.
So if you have created an environment for setting up CxSystem2, you can
activate the environment, otherwise install the packages with pip.

When sphinx is installed, you can build the documentation using the following
command:

$ cd CxSystem2/docs
$ make html

After compiling the documentation, you can open the updated local documentation
by opening the following file in the browser:

CxSystem2/docs/build/html/index.html

Docstrings and reference.rst

Sphinx generates a documentation based on the docstrings of the functions,
methods and classes. The definition of the entities that are parsed are defined
in the reference.rst. The following example shows how we can show the target
methods and functions to sphinx for parsing:

.. module:: cxsystem2.neurodynlib.tools.spike_tools
.. autoclass:: PopulationSpikeStats
 :members:

 .. automethod:: PopulationSpikeStats.__init__

.. autofunction:: get_spike_time
.. autofunction:: get_spike_stats

The first line of this example defines the file that should be parsed. In this
case the filename is spike_tools.py and it is located at
cxsystem2/neurodynlib/tools/spike_tools.py. The autoclass directive defines
the class that should be parsed from that file and the automethod defines the
method of that class that should be parsed. In this case only __init__() will
be parsed. Next, the autofunction directive defines which functions from the
spike_tools.py should be parsed.

For the docstrings, make sure to use the sphinxy docstring for consistency.
Moreover, make sure at least you include the parameters and return names and
types and the description of the method/function. This is a simple example how
the docstring should be formatted:

def test_func(name, state=None):

 """This function does something.

 :param name: The name to use.
 :type name: str.
 :param state: Current state to be in.
 :type state: bool.
 :returns: int -- the return code.
 :raises: AttributeError, KeyError

 """

Lots of more examples of docstrings are available here [https://pythonhosted.org/an_example_pypi_project/sphinx.html#full-code-example].

pypi package

To release a new version of the cxsystem2 in pypi, you should first update
the version. The version of the cxsystem2 are read from the __version__
variable available in cxsystem2/__init__.py. If you update this variable,
all other references to the version number will be updated globally.

We will use the following versioning format for the 3rd number, from software
versioning in wiki [https://en.wikipedia.org/wiki/Software_versioning]:

0 for alpha (status)
1 for beta (status)
2 for release candidate
3 for (final) release

For instance:

1.2.0.1 instead of 1.2-a1
1.2.1.2 instead of 1.2-b2 (beta with some bug fixes)
1.2.2.3 instead of 1.2-rc3 (release candidate)
1.2.3.0 instead of 1.2-r (commercial distribution)
1.2.3.5 instead of 1.2-r5 (commercial distribution with many bug fixes)

After updating the version number, make sure twine package is installed:

$ pip install twine

Then go to the root of the repository, and create the new distribution:

$ python setup.py sdist bdist_wheel

Finally upload the new package to pypi:

$ twine upload dist/*

At this point you will be prompted for the username and password for the
cxsystem2 pypi account.

Continuous Integration

Travis yaml file

CxSystem2 uses Travis CI for continuous integration. The configuration for
Travis is available in .travis.yml file in the root folder of the
repository. All the details of the Travis yaml file is available here [https://docs.travis-ci.com/user/customizing-the-build/] in details.

Most of the used parameters are self-explanatory, e.g. language, os,
python. You can install dependencies before_install and install using
install keyword. You can run different scripts during the tests. We can run
all the tests using pytest tests. This way, all the tests that are
subsequently added to the tests folder will be automatically tested in travis.

Encrypted Parameters

One might need some encrypted parameters during the testing process, for
instance to run cluster run tests, cluster password is required but cannot be
saved in the configuration file in the plain text. Travis provides a command
line client that allows us to encrypt parameters and add them to the
configuration file. Install the client using:

sudo gem install travis

Then log into the client:

travis login

After logging in and testing it with travis whoami, you can add encrypted
parameters to the configuration file:

travis encrypt MY_SECRET_ENV=super_secret --add env.global

This way you can encrypt a value in an environment variable which would be
secure on Travis side and use it in the code.

Browser User Interface (BUI)

Folder Structure

For a better understanding of the BUI sub-module, let’s first take a
look at the folder structure:

├── __init__.py
├── bui.py
└── cx_bui
 ├── __init__.py
 ├── cx_bui
 │ ├── __init__.py
 │ └── settings.py
 ├── db.sqlite3
 ├── editor
 │ ├── __init__.py
 │ ├── admin.py
 │ ├── apps.py
 │ ├── migrations
 │ ├── models.py
 │ ├── templates
 | | └── editor
 | | └── index.html
 │ ├── tests.py
 │ ├── urls.py
 │ └── views.py
 ├── examples
 │ ├── cobaeif_anatomy_config.json
 │ ├── cobaeif_physiology_config.json
 │ ├── csv_configs
 │ ├── markram_step1_anatomy_config.json
 │ ├── markram_step1_physiology_config.json
 │ ├── markram_step2_anatomy_config.json
 │ ├── markram_step2_physiology_config.json
 │ ├── pytest_anatomy_config.json
 │ └── pytest_physiology_config.json
 ├── manage.py
 └── static
 ├── css
 ├── images
 └── scripts

The bui.py is the main file of the module that includes RunServer class.
The top cx_bui folder is the main django folder. The settings.py under nested cx_bui folder, includes the server settings.

The editor folder is the main application of the django server. Nested under
these folders, the important files are views.py which contain the view
functions. The urls.py includes the URLs of the server that have a view in the
view.py. The static folder contains the html page ingredients, including css, scripts and images. In the next sections, we learn some of the main points for improving CxSystem.

Adding Examples

The examples folder includes all examples that can be loaded on the client
side. Inside views.py we have the function that loads the examples and send
them back to the client. Checking the following snippet, we see that the view
looks for the examples based on the file names:

if config_type == 'anatomy':
 filename = example_name + '_anatomy_config.json'
else:
 filename = example_name + '_physiology_config.json'

So, to add other examples, the configuration files should be in the following
file name formats:

EXAMPLENAME_anatomy_config.json
EXAMPLENAME_physiology_config.json

After adding the example, you can edit the index.html template and add the
example in the Example section in the following format:

Click here to load the configuration for the EXAMPLENAME.

Command Line Interface

CxSystem commands are defined under cxsystem2/cmd folder. Each command has a
separate file that includes a main function, which processes the arguments.
Each of those main functions are defined as an entry point in the setup.py
pypi configuration file:

entry_points={
 'console_scripts': [
 'cxsystem2 = cxsystem2.cmd.cxsystem_cmd:main',
 'cxconfig = cxsystem2.cmd.cxconfig_cmd:main',
 'cxcluster = cxsystem2.cmd.cxcluster_cmd:main',
 'cxvisualize = cxsystem2.cmd.cxvisualize_cmd:main',
 'cxserver = cxsystem2.cmd.cxserver_cmd:main'
],
}

Another main component of the CLI is the docopt strings on top of each of the
files. These strings define the allowed arguments for that command. You can use the current commands as examples to create newer commands, but more examples are also available in the docopt website [http://docopt.org/].

Parameters and Models

Adding parameters

The parameters of the Model & Network configuration file are defined and
deployed in the main module, i.e. CxSystem.py. There are two steps to
add a new parameter:

	Defining a function:

This is usually a setter function that sets a module attribute using a given attribute:

def set_sample(self,*args):
 self.sample = eval(args[0])

In this example, set_sample() will set the sample attribute based on a given argument.

	Add the parameter name to “*parameter_to_method_mapping*” dictionary:

This is where the defined function in the previous step is used: by just appending the variable and function name as a key:value pair to parameter_to_method_mapping dictionary:

{
...,
'sample_parameter': [n,self.set_sample]}

Where n is the priority value in setting the parameter. The priority value is useful when one wants to define a parameter based on another but they might not be inserted in the correct order. By default, the priority value could follow the last number in the parameter_to_method_mapping dictionary. The priority value does not need to be unique, two values could have the same priority and they run one after another. For example:

self.parameter_to_method_mapping = {
'device': [0,self.set_device],
'save_input_video': [1,self.save_input_video],
}

Here, save_input_video will be set using self.save_input_video after device, that is set using self.set_device.

Adding Neuron Model

Adding a new neuron group

The hard-coded neuron types (L1i, BC, MC, SS, PC) are in the class NeuronReference in physiology_reference.py.
Under this class, there is a separate method for each neuron group containing code that builds the membrane equation(s).
Adding a new neuron group can be done by copy-pasting the method of eg. the BC neuron group and renaming it (ChC for chandelier cell):

def ChC(self):
 x = neuron_factory().get_class(self.neuron_model)
 x.set_excitatory_receptors(self.excitation_model)
 x.set_inhibitory_receptors(self.inhibition_model)
 ...

You also need to add the neuron type to the list of accepted types under the init of NeuronReference:

NeuronReference._celltypes = array([...existing neuron types..., 'ChC'])

Similarly, add the neuron type also to the list of accepted types under the init of NeuronParser (in parameter_parser.py), and create a method for parameter processing. Often, parameters can be used as such in the equations, so the method becomes:

def _ChC(self, output_neuron):
 pass

Please note the underscore here before the neuron group name. Now, you can use the name ‘ChC’ to define the connectivity and biophysical parameters in the CSV configuration files.

Note that you might need to add connection weights and delays in physiological configuration file based on the synapses you are going to use with your new neuron model. Also, neuron group equations in CxSystem must have x and y coordinates, so adding the following at the end of the equation block is neccessary:

self.output_neuron['equation'] += Equations('''x : meter
y : meter''')

After this, the neuron equation parameters should be added to Physiological configuration file.

Adding alternative neuron models to existing groups

Instead of adding a hard-coded neuron type, you typically need to add an alternative neuron model.
Point neuron models are now located in the cxsystem2.neurodynlib submodule (soon multicompartment models as well), where
you can create a class for the new neuron model. Using PointNeuron as a base class gives access to
basic functionalities for exploring the model behavior.

For example, to add the adaptive exponential integrate-and-fire (AdEx) model, we have written:

class AdexNeuron(PointNeuron):

 default_neuron_parameters = {
 'EL': -70.0 * mV,
 'V_res': -51.0 * mV,
 'VT': -50.0 * mV,
 'gL': 2 * nS,
 'C': 10 * pF,
 'DeltaT': 2 * mV,
 'a': 0.5 * nS,
 'b': 7.0 * pA,
 'tau_w': 100.0 * ms,
 'refractory_period': 2.0 * ms,
 'Vcut': -30.0 * mV
 }

 neuron_model_defns = {'I_NEURON_MODEL': 'gL*(EL-vm) - w + gL * DeltaT * exp((vm-VT) / DeltaT)',
 'NEURON_MODEL_EQS': 'dw/dt = (a*(vm-EL) - w) / tau_w : amp'}
 model_info_url = 'http://neuronaldynamics.epfl.ch/online/Ch6.S1.html'

Then we added the init method:

def __init__(self):

 super().__init__()
 self.threshold_condition = 'vm > Vcut'
 self.reset_statements = 'vm = V_res; w += b'
 self.initial_values = {'vm': None, 'w': 0*pA} # None in vm => vm initialized at EL
 self.states_to_monitor = ['vm', 'w'] # Which state variables to monitor by default

 # Parameters and their units that have not been defined in the base class:
 new_parameter_units = {'DeltaT': mV, 'Vcut': mV, 'a': nS, 'b': pA, 'tau_w': ms}
 self.parameter_units.update(new_parameter_units)

After these initial definitions, you can add model-specific methods. Finally, you need to add the neuron model to the
factory method via which CxSystem accesses neurodynlib:

class neuron_factory:
 def __init__(self):
 self.name_to_class = {...existing models... , 'ADEX': AdexNeuron}

After this you can use change the neuron_model parameter to ‘ADEX’ to use the AdEx equations in your point neurons.

Adding Synapse Model

Synapse models are currently located in cxsystem2.core in physiology_reference.py.
Similarly to adding new neuron groups, you need to add the new synapse types to the lists of accepted types.
For example, we wanted to add a ‘Depressing’ synapse type (a form of short-term synaptic plasticity).
First, in the init of SynapseReference (physiology_reference.py):

SynapseReference.syntypes = array([...existing synapse types..., 'Depressing'])

Then similarly in the init of synapse_parser (parameter_parser.py):

synapse_parser.type_ref = array ([...existing synapse types..., 'Depressing'])

Equations for the new synapse type were then added as a method under SynapseReference:

def Depressing(self):

 self.output_synapse['equation'] = Equations('''
 wght : siemens
 R : 1
 ''')

 self.output_synapse['pre_eq'] = '''
 R = R + (1-R)*(1 - exp(-(t-lastupdate)/tau_d))
 %s += R * U * wght
 R = R - U * R
 ''' % (self.output_synapse['receptor'] + self.output_synapse['post_comp_name'] + '_post')

After these changes, one can use the reference ‘Depressing’ in the Anatomy configuration when defining connections
between neuron groups.

Reference Documentation

Core module

	
class cxsystem2.core.cxsystem.CxSystem(anatomy_and_system_config=None, physiology_config=None, output_file_suffix='', instantiated_from_array_run=0, cluster_run_start_idx=-1, cluster_run_step=-1, array_run_in_cluster=0, array_run_stdout_file=None)

	The main object of cortical system module for building and running a customized model of cortical module based on the configuration files.

	
__init__(anatomy_and_system_config=None, physiology_config=None, output_file_suffix='', instantiated_from_array_run=0, cluster_run_start_idx=-1, cluster_run_step=-1, array_run_in_cluster=0, array_run_stdout_file=None)

	Initialize the cortical system by parsing both of the configuration files.

	Parameters

	
	anatomy_and_system_config – could be either the path to the anatomy and system configuration file,
or the dataframe containing the configuration data.

	output_file_suffix – switch the GeNN mode on/off (1/0), by default GeNN is off

	instantiated_from_array_run – this flag, 0 by default, determines whether this instance of CxSystem is instantiated from
another instance of CxSystem which is running an array run.

	stdout_file_path – this is only used for saving arrayrun stdout Main internal variables:

	
	customized_neurons_list: This list contains the NeuronReference instances. So for each neuron group target line,

	there would be an element in this list which contains all the information for that particular neuron group.

	
	customized_synapses_list: This list contains the SynapseReference instances. Hence, for each synapse custom line,

	there would be an element in this list, containing all the necessary information.

	neurongroups_list: This list contains name of the NeuronGroup() instances that are placed in the Globals().

	synapses_name_list: This list contains name of the Synapses() instances that are placed in the Globals().

	monitor_name_bank: The dictionary containing the name of the monitors that are defined for any NeuronGroup() or Synapses().

	
	default_monitors: In case –> and <– symbols are used in the configuration file, this default monitor will be applied on all

	the target lines in between those marks.

	save_data: The save_data() object for saving the final data.

	
gather_result()

	After the simulation and using the syntaxes that are previously prepared in the syntax_bank of save_data() object,
this method saves the collected data to a file.

	
monitors(mon_args, object_name)

	This method creates the Monitors() in brian2 based on the parameters that are extracted from a target line in configuration file.

	Parameters

	
	mon_args – The monitor arguments extracted from the target line.

	object_name – The generated name of the current object.

Main internal variables:

	mon_tag: The tag that is extracted from the target line every time.

	mon_name: Generated variable name for a specific monitor.

	mon_str: The syntax used for building a specific StateMonitor.

	
	sub_mon_tags: The tags in configuration file that are specified for a StateMonitor(), e.g. in record=True which is specified by

	[rec]True in configuration file, [rec] is saved in sub_mon_tags

	
	sub_mon_args: The corresponding arguments of sub_mon_tags for a StateMonitor(), e.g. in record=True which is specified by

	[rec]True in configuration file, True is saved in sub_mon_args.

	
neuron_group()

	The method that creates the NeuronGroups() based on the parameters that are extracted from the
configuration file in the __init__ method of the class.

Main internal variables:

	mon_args: contains the monitor arguments extracted from the target line.

	
	net_center: center position of the neuron group in visual field coordinates, description can be found in

	configuration file tutorial.

	_dyn_neurongroup_name: Generated variable name for the NeuronGroup() object in brian2.

	_dyn_neuronnumber_name: Generated variable name for corresponding Neuron Number.

	_dyn_neuron_eq_name: Generated variable name for the NeuronGroup() equation.

	_dyn_neuron_thres_name: Generated variable name for the NeuronGroup() threshold.

	_dyn_neuron_reset_name: Generated variable name for the NeuronGroup() reset value.

	_dyn_neuron_refra_name: Generated variable name for the NeuronGroup() refractory value.

	_dyn_neuron_namespace_name: Generated variable name for the NeuronGroup() namespace.

	
	ng_init: NeuronGroups() should be initialized with a random vm, ge and gi values. To address this, a 6-line code

	is generated and put in this variable, the running of which will lead to initialization of current NeuronGroup().

	
relay()

	The method that creates the relay NeuronGroups based on the parameters that are extracted from the configuration file in the __init__ method of the class. Note that the SpikeGeneratorGroup() does not support the locations and synaptic connection based on the distance between the input, and the target neuron group. For this reason, a “relay” neuron group is created which is directly connected to the SpikeGeneratorGroup(). Unlike SpikeGeneratorGroup() this relay group supports the locations. With this workaround, the synaptic connection between the input and the Neuron group can be implemented based on the distance of the neurons then.

Note: extracting the input spikes and time sequences for using in a SpikeGeneratorGroup() is done in this method. This procedure needs using a “run()” method in brian2. However, one of the limitations of the Brian2GeNN is that the user cannot use multiple “run()” methods in the whole script. To address this issue, the GeNN device should be set after using the first run(), hence the unusual placement of “set_device(‘genn’)” command in current method.

Note2: The radius of the VPM input is determined based on the Markram et al. 2015: The radius of the system is 210 um and the number of VPM input is 60 (page 19 of supplements). As for the radius of the VPM input, it is mentioned in the paper (page 462) that “neurons were arranged in 310 mini-columns at horizontal positions”. considering the area of the circle with radius of 210um and 60/310 mini-columns, the radius will be equal to 92um.

Main internal variables:

	inp: an instance of stimuli() object from stimuli module.

	relay_group: the dictionary containing the data for relay NeuronGroup()

	_dyn_neurongroup_name: Generated variable name for the NeuronGroup() object in brian2.

	_dyn_neuronnumber_name: Generated variable name for corresponding Neuron Number.

	_dyn_neuron_eq_name: Generated variable name for the NeuronGroup() equation.

	_dyn_neuron_thres_name: Generated variable name for the NeuronGroup() threshold.

	_dyn_neuron_reset_name: Generated variable name for the NeuronGroup() reset value.

	sg_syn_name: variable name for the Synapses() object that connects SpikeGeneratorGroup() and relay neurons.

following four variables are build using the load_input_seq() method in stimuli object:

	spikes_str: The string containing the syntax for Spike indices in the input neuron group.

	times_str: The string containing the syntax for time indices in the input neuron group.

	sg_str: The string containing the syntax for creating the SpikeGeneratorGroup() based on the input .mat file.

	number_of_neurons: The number of neurons that exist in the input .mat file.

	
synapse()

	The method that creates the Synapses() in brian2, based on the parameters that are extracted from
the configuration file in the __init__ method of the class.

Main internal variables:

	mon_args: contains the monitor arguments extracted from the target line.

	
	args: normally args contains a set of arguments for a single Synapses() object.

	However, this changes when the post-synaptic neuron is the first (with index of 0) compartment of a
multi-compartmental neuron. In this case, one might intend to target all three sub-compartments,
i.e. Basal dendrites, Soma and proximal apical dendrites. So the single set of arguments will be changed
to 3 sets of arguments and a for loop will take care of every one of them.

	dyn_syn_name: Generated variable name for the Synapses() object in brian2.

	_dyn_syn_eq_name: Generated variable name for the Synapses() equation.

	_dyn_syn_pre_eq_name: Generated variable name for pre_synaptic equations, i.e. “on_pre=…”

	_dyn_syn_post_eq_name: Generated variable name for post_synaptic equations, i.e. “on_post= …”

	_dyn_syn_namespace_name: Generated variable name for the Synapses() namespace.

	
	syn_con_str: The string containing the syntax for connect() method of a current Synapses() object. This string

	changes depending on using the [p] and [n] tags in the configuration file.

	
class cxsystem2.core.parameter_parser.NeuronParser(output_neuron, physio_config_df)

	This class embeds all parameter sets associated to all neuron types and will return it as a namespace in form of dictionary

	
__init__(output_neuron, physio_config_df)

	Initialize self. See help(type(self)) for accurate signature.

	
class cxsystem2.core.parameter_parser.SynapseParser(output_synapse, physio_config_df)

	This class contains all the variables that are required for the Synapses() object namespaces.
There are several reference dictionaries in this class for:

	cw: connection weights for any connection between NeuronGroup()s.

	sp: Sparseness values for any connection between NeuronGroup()s.

	STDP: values for A_pre, A_post, Tau_pre and Tau_post for any connection between NeuronGroup()s.

	dist: distribution of the neurons for connection between NeuronGroup()s.

There are also some important internal variables:

	Cp: Synaptic potentiation coefficient according to van Rossum J Neurosci 2000

	Cd: Synaptic depression coefficient according to van Rossum J Neurosci 2000

	stdp_Nsweeps: 60 in papers one does multiple trials to reach +-50% change in synapse strength. A-coefficient will be divided by this number

	stdp_max_strength_coefficient: This value is to avoid runaway plasticity.

	conn_prob_gain: This is used for compensation of small number of neurons and thus incoming synapses

	
__init__(output_synapse, physio_config_df)

	The initialization method for namespaces() object.

	Parameters

	output_synapse – This is the dictionary created in NeuronReference() in brian2_obj_namespaces module. This contains all the
information about the synaptic connection. In this class, Synaptic namespace parameters are directly added to
it. Following values are set after initialization:
Cp, Cd, sparseness, spatial_decay. Other variables are then set based on the type of the synaptic connection (STDP,Fixed, etc).

	
CPlastic()

	The CPlastic method for assigning the parameters to the customized_synapses() object.

This contains all the information about the synaptic connection. In this method, STDP parameters are directly added to this variable.
Following values are set in this method: Apre, Apost, Tau_pre, Tau_post, wght_max, wght0.

	
Depressing()

	Depressing synapse

	
Facilitating()

	Facilitating synapse

	
Fixed()

	The Fixed method for assigning the parameters for Fixed synaptic connection to the customized_synapses() object.

	
Fixed_calcium()

	The Fixed method for assigning the parameters for Fixed synaptic connection to the customized_synapses() object.
This synapse was used in the 1st submitted version, but was later deemed non-valid in terms of calcium scaling

	
Fixed_const_wght()

	The Fixed method with constant weight for assigning the parameters for Fixed synaptic connection to the customized_synapses() object.

	
Fixed_multiply()

	The Fixed multiply method using constant weight but assigning multiplier further on to synaptic weight. This enables array search for
loaded connection strengths.

	
STDP()

	The STDP method for assigning the STDP parameters to the customized_synapses() object.

This contains all the information about the synaptic connection. In this method, STDP parameters are directly added to this variable.
Following STDP values are set in this method: Apre, Apost, Tau_pre, Tau_post, wght_max, wght0.

	
STDP_with_scaling()

	The STDP method for assigning the STDP parameters to the customized_synapses() object.

	
scale_by_calcium(ca, cw=None)

	Scales synaptic weight depending on calcium level

	Parameters

	
	ca – float, calcium concentration in mM

	cw – float, connection weight with calcium level 2.0mM (optional)

	Returns

	float, scaled synaptic weight

	
class cxsystem2.core.physiology_reference.NeuronReference(idx, number_of_neurons, cell_type, layers_idx, general_grid_radius, min_distance, physio_config_df, network_center=0j, cell_subtype='--')

	Using this class, a dictionary object is created which contains all parameters and variables that are needed to create a group of that customized cell. This dictionary will eventually be used in process of building the cortical module. New types of neurons should be implemented in this class.

	
__init__(idx, number_of_neurons, cell_type, layers_idx, general_grid_radius, min_distance, physio_config_df, network_center=0j, cell_subtype='--')

	initialize the NeuronReference based on the arguments.

	Parameters

	
	number_of_neurons – number of neurons in the NeuronGroup() object.

	cell_type – type of cell in the NeuronGroup: currently PC, SS, BC, MC and L1i.

	layers_idx – indicating the layer in which the cell group is located. In case of SS, BC, MC and L1i it is an integer but for PC
which is a multi-compartmental neuron, it is a tuple array. This tuple numpy array defines the first and last
layers in which the neuron resides. So np.array([4,1]) means that the soma resides in layer 4 and the apical
dendrites which are (2 compartments) extend to layer 2/3 and 1. To avoid confusion, layer 2 is used as the indicator
of layer 2/3. Hence, if the last compartment of a neuron is in layer 2/3, use number 2.

	network_center – as the name implies, this argument defines the center of teh NeuronGroup() in visual field coordinates.
The default value is 0+0j.

	resolution – resolution for formation of neurons in the grid. Default value is 0.1

Main internal variables:

	
	output_neuron: the main dictionary containing all the data about current Customized_neuron_group including: number of neurons, threshold,

	reset, refractory, neuron type, soma position(layer), dendrites layer, total number of compartments, namespace, equation,
positions (both in cortical and visual coordinates).

	
BC()

	This method build up the equation for BC neurons. The final equation is then saved in output_neuron[‘equation’].

	The equation of the neuron is as follows:

dvm/dt = (gL*(EL-vm) + gL * DeltaT * exp((vm-VT) / DeltaT) + ge_soma * (Ee-vm) + gi_soma * (Ei-vm)) / C : volt (unless refractory)
dge_soma/dt = -ge_soma/tau_e : siemens
dgi_soma/dt = -gi_soma/tau_i : siemens
x : meter
y : meter

	
CI()

	This method build up the equation for CI neurons. CI stands for current injection as timed array directly to neuron model.
The final equation is then saved in output_neuron[‘equation’].

	The equation of the neuron is as follows:

dvm/dt = (gL*(EL-vm) + ge_soma * 1 * vm + gi_soma * 1 * vm + I_ext(t,i) / C : volt (unless refractory)
dge_soma/dt = -ge_soma/tau_e : siemens
dgi_soma/dt = -gi_soma/tau_i : siemens
x : meter
y : meter
I_ext : amp

	
L1i()

	This method build up the equation for Layer 1 inhibitory (L1i) neurons. The final equation is then saved in output_neuron[‘equation’].

	The equation of the neuron is as follows:

dvm/dt = (gL*(EL-vm) + gL * DeltaT * exp((vm-VT) / DeltaT) + ge_soma * (Ee-vm) + gi_soma * (Ei-vm)) / C : volt (unless refractory)
dge_soma/dt = -ge_soma/tau_e : siemens
dgi_soma/dt = -gi_soma/tau_i : siemens
x : meter
y : meter

	
MC()

	This method build up the equation for MC neurons. The final equation is then saved in output_neuron[‘equation’].

	The equation of the neuron is as follows:

dvm/dt = (gL*(EL-vm) + gL * DeltaT * exp((vm-VT) / DeltaT)
 + ge_soma * (Ee-vm) + gi_soma * (Ei-vm)) / C : volt (unless refractory)
dge_soma/dt = -ge_soma/tau_e : siemens
dgi_soma/dt = -gi_soma/tau_i : siemens
x : meter
y : meter

	
NDNEURON()

	NDNEURON type, just for testing Neurodynlib

	Returns

	

	
PC()

	This method build up the equation for PC neurons based on the number of compartments.
The final equation is then saved in output_neuron[‘equation’].

Main internal variables:

	
	eq_template_soma: Contains template somatic equation, the variables in side the equation could be

	replaced later using “Equation” function in brian2. :

dvm/dt = (gL*(EL-vm) + gealpha * (Ee-vm) + gealphaX * (Ee-vm) + gialpha * (Ei-vm)
 + gL * DeltaT * exp((vm-VT) / DeltaT) +I_dendr) / C : volt (unless refractory)
dge/dt = -ge/tau_e : siemens
dgealpha/dt = (ge-gealpha)/tau_e : siemens
dgeX/dt = -geX/tau_eX : siemens
dgealphaX/dt = (geX-gealphaX)/tau_eX : siemens
dgi/dt = -gi/tau_i : siemens
dgialpha/dt = (gi-gialpha)/tau_i : siemens
x : meter
y : meter

	eq_template_dend: Contains template dendritic equation:

dvm/dt = (gL*(EL-vm) + gealpha * (Ee-vm) + gealphaX * (Ee-vm) + gialpha * (Ei-vm)
 + I_dendr) / C : volt (unless refractory)
dge/dt = -ge/tau_e : siemens
dgealpha/dt = (ge-gealpha)/tau_e : siemens
dgeX/dt = -geX/tau_eX : siemens
dgealphaX/dt = (geX-gealphaX)/tau_eX : siemens
dgi/dt = -gi/tau_i : siemens
dgialpha/dt = (gi-gialpha)/tau_i : siemens

	
SS()

	This method build up the equation for SS neurons. The final equation is then saved in output_neuron[‘equation’].

	The equation of the neuron is as follows:

dvm/dt = (gL*(EL-vm) + gL * DeltaT * exp((vm-VT) / DeltaT) + ge_soma * (Ee-vm) + gi_soma * (Ei-vm)) / C : volt (unless refractory)
dge_soma/dt = -ge_soma/tau_e : siemens
dgi_soma/dt = -gi_soma/tau_i : siemens
x : meter
y : meter

	
VPM()

	This method build up the equation for VPM neurons. No equation is needed.

	
class cxsystem2.core.physiology_reference.SynapseReference(receptor, pre_group_idx, post_group_idx, syn_type, pre_type, post_type, physio_config_df, post_comp_name='_soma', custom_weight='--', multiply_weight=1)

	In this class, a dictionary object is created which contains all parameters and variables that are needed to create a Synapses() object between two neuron group. This dictionary will eventually be used in process of building the cortical module. New types of synapses should be implemented in this class.

	
__init__(receptor, pre_group_idx, post_group_idx, syn_type, pre_type, post_type, physio_config_df, post_comp_name='_soma', custom_weight='--', multiply_weight=1)

	initializes the SynapseReference based on its arguments.

	Parameters

	
	receptor – defines the type of the receptor in the synaptic connection. Currently ge and gi are implemented.

	pre_group_idx – The index of the pre-synaptic group.

	post_group_idx – The index of the post-synaptic group.

	syn_type – Type of the synaptic connection, currently STDP and Fixed are implemented.

	pre_type – Type of the pre-synaptic NeuronGroup.

	post_type – Type of the post-synaptic NeuronGroup.

	post_comp_name – Name of the target compartment in the cells of the post-synaptic NeuronGroup.
The default value is “_soma” as usually soma is being targeted. In case other compartments are targeted in a PC cell,
e.g. basal or apical dendrites, _basal or _apical will be used.

Main internal variables:

	
	output_synapse: the main dictionary containing all the data about current customized_synapse_group including: synaptic equations

	(model, pre, post), type of synapse, type of receptor, index and type of pre- and post-synaptic group, namespace
for the Synapses() object, sparseness, spatial_decay.

	_name_space: An instance of brian2_obj_namespaces() object which contains all the constant parameters for this synaptic equation.

	
CPlastic()

	The method for implementing the plastic synaptic connection according to Clopath_2010_NatNeurosci.

	
Depressing()

	Depressing non-stochastic Tsodyks-Markram synapse

	
Facilitating()

	Facilitating non-stochastic Tsodyks-Markram synapse

	
Fixed()

	The method for implementing the Fixed synaptic connection.

	
Fixed_calcium()

	The method for implementing the Fixed synaptic connection.

	
Fixed_const_wght()

	The method for implementing the Fixed synaptic connection.

	
Fixed_multiply()

	The method for implementing the Fixed synaptic connection which is multiplied with factor coming from Anatomy csv.

	
STDP()

	The method for implementing the STDP synaptic connection.

	
STDP_with_scaling()

	The method for implementing the STDP synaptic connection.

	
class cxsystem2.core.workspace_manager.Workspace(workspace_path, suffix)

	As the name implies, this module is used for gathering the data and saving the result.

	
__init__(workspace_path, suffix)

	Initializes the save_data object.

	Parameters

	
	save_path – The path for saving the data.

	suffix – the string containing date and time that is supposed to be unique for each simulation and is used as a suffix for file names.

Main internal variables:

	data: the main variable to be saved. It contains all the data about the positions of the NeuronGroup()s as well as the monitor results.

	
	syntax_bank: Since the monitors are explicitly defined in the Globals(), extracting the data from them requires addressing their name

	explicitely. To automatize this process, the syntaxes for extracting the data from the target monitors are generated and
saved in this variable, so that they can be run at the end of the simulation.

	
create_connections_key(key)

	In case the user wants to save a peculiar variable, this method can be used to check and create a new key
in data dictionary (if does not exist).

	Parameters

	key – name of the key to be created in the final data variable.

	
create_results_key(key)

	In case the user wants to save a peculiar variable, this method can be used to check and create a new key
in data dictionary (if does not exist).

	Parameters

	key – name of the key to be created in the final data variable.

	
class cxsystem2.core.equation_templates.EquationHelper(neuron_model='EIF', is_pyramidal=False, compartment='soma', exc_model='SIMPLE_E', inh_model='SIMPLE_I', custom_strings=None)

	Helper class for switching swiftly between neuron/receptor models in CxSystem.
Currently used only for the pyramidal cell (PC) cell type; point neuron models
have been migrated to neurodynlib.

	
__init__(neuron_model='EIF', is_pyramidal=False, compartment='soma', exc_model='SIMPLE_E', inh_model='SIMPLE_I', custom_strings=None)

	Initialize self. See help(type(self)) for accurate signature.

	
class cxsystem2.core.stimuli.Stimuli(duration, input_mat_path, output_folder, output_file_extension, output_file_suffix='')

	[Extracted from VCXmodel] This is the stimulation object for applying the input to a particular NeuronGroup().
Currently only video input is supported.

	
__init__(duration, input_mat_path, output_folder, output_file_extension, output_file_suffix='')

	Initializes the input module for and instance of CxSystem.

	Parameters

	
	duration –

	input_mat_path – .mat file location

	output_folder – location of the saved output

	output_file_suffix – suffix for the output file

	output_file_extension – extension for the output file, i.e. gz, bz2, pickle

	
calculate_input_seqs()

	Calculating input sequence based on the video input.

	
generate_inputs(freq)

	The method for generating input based on the .mat file, using the internal _initialize_inputs() and _calculate_input_seqs() methods.

	Parameters

	freq – frequency.

	
get_input_positions()

	Extract the positions from the .mat file.

	
load_input_seq(input_spike_file_location)

	Loads spikes from file.

	Parameters

	input_spike_file_location – Location of the file to load spikes.

	
cxsystem2.core.tools.write_to_file(save_path, data)

	

	
cxsystem2.core.tools.load_from_file(load_path)

	

	
cxsystem2.core.tools.parameter_finder(df, keyword)

	

	
cxsystem2.core.tools.change_anat_file_header_value(filepath, save_path, parameter, new_value)

	

	
cxsystem2.core.tools.read_config_file(conf, header=False)

	This function reads the file and convert it to csv from json if necessary.
It only works by loading the csv without headers. (header=none)
If you need the first row as header, do it manually
:param header:
:param conf:
:return:

neurodynlib module

	
class cxsystem2.neurodynlib.multicompartment_models.LeakyCompartment

	Not implemented!
A leaky capacitor to be used as a template for pyramidal cell compartments.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
class cxsystem2.neurodynlib.multicompartment_models.MulticompartmentNeuron

	Not implemented!
A base class for multicompartmental neuron models.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
class cxsystem2.neurodynlib.multicompartment_models.LegacyPyramidalCell(n_apical=3)

	Not implemented!
The kind of pyramidal cell used in Heikkinen et al. 2015 J Neurosci, Andalibi et al. 2019 Neural Computation,
and Hokkanen et al. 2019 Neural Computation. See cxsystem2.core.equation_templates for the current implementation.

	
__init__(n_apical=3)

	Initialize self. See help(type(self)) for accurate signature.

	
class cxsystem2.neurodynlib.neuron_models.PointNeuron(is_pyramidal=False, compartment='soma')

	Base class for point neurons

	
__init__(is_pyramidal=False, compartment='soma')

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
add_external_current(current_name='I_ext', current_eqs=None)

	Adds an external current to the neuron

	Parameters

	
	current_name (string) – name of the current

	current_eqs (string) – equations describing the external current

	Returns

	

	
add_model_definition(key, string_to_add)

	Append a string to a template placeholder.

	Parameters

	
	key (string) – placeholder name

	string_to_add – string to append to the placeholder

	
add_tonic_current(tonic_current=50. * pamp, tau_rampup=None)

	Adds tonic current injection to the neuron

	Parameters

	
	tonic_current – amplitude of current injection (in amps)

	tau_rampup – time constant for current ramp-up (in milliseconds)

	
add_vm_noise(noise_sigma=2. * mvolt)

	Adds a stochastic component to the membrane equation as explained in
Brian2 documentation [https://brian2.readthedocs.io/en/stable/user/models.html#noise]

	Parameters

	noise_sigma –

	Returns

	

	
get_compartment_equations(compartment_name)

	Compiles the membrane equation and adds compartment name to all compartment-specific variables

	Parameters

	compartment_name (string) – name of the compartment

	Returns

	string

	
get_initial_values()

	Get initial values. If the initial value of vm is None, will replace it with EL (reversal potential of leak).

	Returns

	

	
get_json(include_neuron_name=True)

	Creates a JSON string of parameter names and values (units are discarded).

	Parameters

	include_neuron_name (bool) – whether to include the neuron name

	Returns

	string

	
get_membrane_equation(substitute_ad_hoc=None, return_string=True)

	Compiles the membrane equation from the template for use in Brian2.
This should be the only function where the template equation is used.

	Parameters

	
	substitute_ad_hoc (dict) – dictionary of temporary values to use in the equation template

	return_string (bool) – If True, returns equations as a string. Otherwise, returns a b2.Equations object.

	Returns

	string (or b2.Equations object)

	
get_neuron_equations()

	Returns the membrane equations in a form that prints out nicely in Jupyter Notebook

	Returns

	b2.Equations object

	
get_neuron_parameters()

	Shows all the current parameter names and values

	Returns

	dict

	
get_parameter_names()

	Shows all the parameter names that can/must be defined

	Returns

	list

	
get_refractory_period()

	Get the refractory period (after a spike).

	Returns

	duration (typically in ms)

	
get_reset_statements()

	Get the statements that will be executed once the neuron hits the threshold.

	Returns

	string

	
get_states_to_monitor()

	Get state variables to monitor (for method plot_states())

	Returns

	list

	
get_threshold_condition()

	Get the spike threshold condition.

	Returns

	string

	
getting_started(step_amplitude=1.2 * namp, sine_amplitude=2.5 * namp, sine_freq=150. * hertz, sine_dc=2. * namp)

	Simple example that stimulates the neuron with a step and a sinusoidal current.

	Parameters

	
	step_amplitude – step current amplitude (in amps)

	sine_amplitude – sine current amplitude (in amps)

	sine_freq – sine current frequency (in Hz)

	sine_dc – constant current to inject during the sine stimulation (in amps)

	Returns

	

	
list_neurons_in_json(filename)

	List neuron types (sets of parameters) in a JSON file

	Parameters

	filename (string) – Path to file

	Returns

	list

	
make_neuron_group(n)

	Makes a Brian2 NeuronGroup

	Parameters

	n (int) – number of neurons

	Returns

	b2.NeuronGroup object

	
plot_fi_curve(min_current=0. * amp, max_current=1. * namp, step_size=10. * pamp, plot=True, max_rate=None, save_name=None)

	Plot the frequency-current (f-I) curve.

	Parameters

	
	min_current – minimum current (in amps)

	max_current – maximum current (in amps)

	step_size – current step (in amps)

	plot (bool) – whether to plot the results or not

	max_rate – maximum frequency to show in the plot

	Returns

	steps, counts (if plot is False)

	
plot_states(state_monitor, parameters=None)

	Plots pre-defined state variables from a state monitor

	Parameters

	
	state_monitor – b2.StateMonitor

	parameters – list of parameters

	
plot_vm(state_monitor)

	Plots the vm from a state monitor

	Parameters

	state_monitor – b2.StateMonitor with vm recording

	
read_json(filename, neuron_name=None)

	Read and load parameters from a JSON file.

	Parameters

	
	filename (string) – Path to file

	neuron_name (string) – the name of the neuron to read from the file

	
save_json(filename=None)

	Saves the neuron parameters in a JSON file.

	Parameters

	filename (string) – Path to file. If None, will save as neuron_name.json

	
set_excitatory_receptors(receptor_name)

	Sets the excitatory receptors.

	Parameters

	receptor_name (string) – name of receptor model (see neurodynlib.receptor_models)

	
set_inhibitory_receptors(receptor_name)

	Sets the inhibitory receptors.

	Parameters

	receptor_name (string) – name of receptor model (see neurodynlib.receptor_models)

	
set_model_definition(key, string_to_set)

	Set the value of a template placeholder.

	Parameters

	
	key (string) – placeholder name

	string_to_set (string) – placeholder value

	
set_neuron_parameters(**kwargs)

	Set neuron parameters.
If you don’t know the correct units, use get_neuron_parameters() first to get the default parameters with
correct units.

	Parameters

	kwargs – new parameter values are given as arguments

	
simulate_neuron(I_stim=<brian2.input.timedarray.TimedArray object>, simulation_time=1. * second, **kwargs)

	Simulate/stimulate the neuron

	Parameters

	
	I_stim – input stimulus (use the input_factory to create the stimulus)

	simulation_time – duration (usually in milliseconds, eg. 3000*ms)

	kwargs – custom neuron parameters can be given as arguments

	Returns

	b2.StateMonitor, b2.SpikeMonitor

	
what_is_this()

	Method to query for the URL describing the neuron model

	Returns

	url

	
class cxsystem2.neurodynlib.neuron_models.LifNeuron

	Leaky Intergrate-and-Fire (LIF) model.
See Neuronal Dynamics, Chapter 1 Section 3 [http://neuronaldynamics.epfl.ch/online/Ch1.S3.html].

Requires setting the following parameters: EL, gL, C, V_res, VT.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
class cxsystem2.neurodynlib.neuron_models.EifNeuron

	Exponential Integrate-and-Fire (EIF) model.
See Neuronal Dynamics, Chapter 5 Section 2 [http://neuronaldynamics.epfl.ch/online/Ch5.S2.html].

Requires setting the following parameters: EL, gL, C, V_res, VT, DeltaT, Vcut.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
getting_started(step_amplitude=0.8 * namp, sine_amplitude=1.6 * namp, sine_freq=150. * hertz, sine_dc=1.3 * namp)

	Simple example that stimulates the neuron with a step and a sinusoidal current.

	Parameters

	
	step_amplitude – step current amplitude (in amps)

	sine_amplitude – sine current amplitude (in amps)

	sine_freq – sine current frequency (in Hz)

	sine_dc – constant current to inject during the sine stimulation (in amps)

	Returns

	

	
class cxsystem2.neurodynlib.neuron_models.AdexNeuron

	Adaptive Exponential Integrate-and-Fire (ADEX) model.
See Neuronal Dynamics, Chapter 6 Section 1 [http://neuronaldynamics.epfl.ch/online/Ch6.S1.html].

Requires setting the following parameters: EL, gL, C, V_res, VT, DeltaT, Vcut, a, b, tau_w.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
getting_started(step_amplitude=65. * pamp, sine_amplitude=125. * pamp, sine_freq=150. * hertz, sine_dc=100. * pamp)

	Simple example that stimulates the neuron with a step and a sinusoidal current.

	Parameters

	
	step_amplitude – step current amplitude (in amps)

	sine_amplitude – sine current amplitude (in amps)

	sine_freq – sine current frequency (in Hz)

	sine_dc – constant current to inject during the sine stimulation (in amps)

	Returns

	

	
plot_states(state_monitor, spike_monitor=None, save_name=None)

	Visualizes the state variables: w-t, vm-t and phase-plane w-vm

	Parameters

	state_monitor – b2.StateMonitor

	
class cxsystem2.neurodynlib.neuron_models.HodgkinHuxleyNeuron

	Implementation of a Hodgkin-Huxley neuron with Na, K and leak channels (SIMPLE_HH).
See Neuronal Dynamics, Chapter 2 Section 2 [http://neuronaldynamics.epfl.ch/online/Ch2.S2.html]

Requires setting the following parameters: EL, gL, C, EK, ENa, gK, gNa, V_spike.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
getting_started(step_amplitude=7.2 * uamp, sine_amplitude=3.6 * uamp, sine_freq=150. * hertz, sine_dc=2.9 * namp)

	Simple example that stimulates the neuron with a step and a sinusoidal current.

	Parameters

	
	step_amplitude – step current amplitude (in amps)

	sine_amplitude – sine current amplitude (in amps)

	sine_freq – sine current frequency (in Hz)

	sine_dc – constant current to inject during the sine stimulation (in amps)

	Returns

	

	
plot_states(state_monitor)

	Plots the state variables vm, m, n, h vs. time.

	Parameters

	state_monitor – b2.StateMonitor

	
class cxsystem2.neurodynlib.neuron_models.IzhikevichNeuron

	Izhikevich model (IZHIKEVICH).
See Neuronal Dynamics, Chapter 6 Section 1 [http://neuronaldynamics.epfl.ch/online/Ch6.S1.html]

Here, we use the formulation and parameters presented in
Izhikevich & Edelman 2008 PNAS [https://www.pnas.org/content/105/9/3593].

Requires setting the following parameters: EL, C, V_res, VT, k, a, b, d, Vcut.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
plot_states(state_monitor)

	Visualizes the state variables: u-t, vm-t and phase-plane u-vm

	Parameters

	state_monitor – b2.StateMonitor

	
class cxsystem2.neurodynlib.neuron_models.LifAscNeuron

	Leaky Integrate-and-Fire with After-spike Currents (LIFASC).
One of the generalized LIF (GLIF_3) models used in the Allen Brain Institute.

For more information, see http://celltypes.brain-map.org/ ,
http://help.brain-map.org/display/celltypes/Documentation?_ga=2.31556414.1221863260.1571652272-1994599725.1571652272 ,
or Teeter et al. 2018 Nature Comm. https://www.nature.com/articles/s41467-017-02717-4.

Requires setting the following parameters: EL, gL, C, V_res, VT, A_asc1, A_asc2, tau_asc1, tau_asc2.

	
__init__()

	Initializes the point neuron object

	Parameters

	
	is_pyramidal (bool) – whether the point neuron model is part of a pyramidal/multicompartmental cell

	compartment (string) – name of the compartment (eg. soma, basal, a3)

	
read_abi_neuron_config(neuron_config)

	Method for importing parameters from the Allen Brain Institute’s cell type atlas.
Parameters can be obtained by downloading the json from their website.

You can also use the AllenSDK:

from allensdk.api.queries.glif_api import GlifApi
neuron_config = GlifApi().get_neuron_configs([neuronal_model_id])[neuronal_model_id]

	Parameters

	neuron_config –

	Returns

	

	
class cxsystem2.neurodynlib.neuron_models.neuron_factory

	
	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
class cxsystem2.neurodynlib.receptor_models.ReceptorModel(receptor_model)

	
	
__init__(receptor_model)

	Initialize self. See help(type(self)) for accurate signature.

	
cxsystem2.neurodynlib.tools.input_factory.get_step_current(t_start, t_end, unit_time, amplitude, append_zero=True)

	Creates a step current. If t_start == t_end, then a single
entry in the values array is set to amplitude.

	Parameters

	
	t_start (int) – start of the step

	t_end (int) – end of the step

	unit_time – unit of t_start and t_end. e.g. 0.1*brian2.ms

	amplitude – amplitude of the step. e.g. 3.5*brian2.uamp

	append_zero – if true, 0Amp is appended at t_end+1. Without that trailing 0, Brian reads out the last
value in the array (=amplitude) for all indices > t_end.

	Returns

	Brian2.TimedArray

	
cxsystem2.neurodynlib.tools.input_factory.get_ramp_current(t_start, t_end, unit_time, amplitude_start, amplitude_end, append_zero=True)

	Creates a ramp current. If t_start == t_end, then ALL entries are 0.

	Parameters

	
	t_start (int) – start of the ramp

	t_end (int) – end of the ramp

	unit_time – unit of t_start and t_end. e.g. 0.1*ms

	amplitude_start – amplitude of the ramp at t_start. e.g. 3.5*uamp

	amplitude_end – amplitude of the ramp at t_end. e.g. 4.5*uamp

	append_zero (bool) – if true, 0Amp is appended at t_end+1. Without that trailing 0, Brian reads out the last value in the array (=amplitude_end) for all indices > t_end.

	Returns

	Brian2.TimedArray

	
cxsystem2.neurodynlib.tools.input_factory.get_sinusoidal_current(t_start, t_end, unit_time, amplitude, frequency, direct_current, phase_offset=0.0, append_zero=True)

	Creates a sinusoidal current. If t_start == t_end, then ALL entries are 0.

	Parameters

	
	t_start (int) – start of the sine wave

	t_end (int) – end of the sine wave

	unit_time – unit of t_start and t_end. e.g. 0.1*ms

	amplitude – maximum amplitude of the sinus e.g. 3.0*uamp

	frequency – Frequency of the sine. e.g. 0.5*kHz

	direct_current – DC-component (=offset) of the current, e.g. 1.5*uamp

	phase_offset (float) – phase at t_start. Default = 0

	append_zero (bool) – if true, 0Amp is appended at t_end+1. Without that trailing 0, Brian reads out the last value in the array for all indices > t_end.

	Returns

	Brian2.TimedArray

	
cxsystem2.neurodynlib.tools.input_factory.get_zero_current()

	Returns a TimedArray with one entry: 0 Amp

	Returns:

	TimedArray

	
cxsystem2.neurodynlib.tools.input_factory.get_spikes_current(t_spikes, unit_time, amplitude, append_zero=True)

	Creates a two dimensional TimedArray wich has one column for each value in t_spikes.
All values in each column are 0 except one, the spike time as specified in t_spikes is set to amplitude.
Note: This function is provided to easily insert pulse currents into a cable. For other use of
spike input, search the Brian2 documentation for SpikeGeneration.

	Parameters

	
	t_spikes (int) – list of spike times

	unit_time – unit of t_spikes . e.g. 1*ms

	amplitude – amplitude of the spike. All spikes have the same amplitude

	append_zero (bool) – if true, 0Amp is appended at t_end+1. Without that trailing 0,
Brian reads out the last value in the array for all indices > t_end.

	Returns

	Brian2.TimedArray

	
cxsystem2.neurodynlib.tools.input_factory.plot_step_current_example()

	Example for get_step_current.

	
cxsystem2.neurodynlib.tools.input_factory.plot_ramp_current_example()

	Example for get_ramp_current

	
cxsystem2.neurodynlib.tools.input_factory.plot_sinusoidal_current_example()

	Example for get_sinusoidal_current

	
cxsystem2.neurodynlib.tools.input_factory.getting_started()

	

	
cxsystem2.neurodynlib.tools.plot_tools.plot_voltage_and_current_traces(voltage_monitor, current, title=None, firing_threshold=None, legend_location=0, save_name=None)

	Not implemented! plots voltage and current .

	Args:

	voltage_monitor (StateMonitor): recorded voltage
current (TimedArray): injected current
title (string, optional): title of the figure
firing_threshold (Quantity, optional): if set to a value, the firing threshold is plotted.
legend_location (int): legend location. default = 0 (=”best”)
save_name (string, optional): if set, the figure is saved to this file name

	Returns:

	the figure

	
cxsystem2.neurodynlib.tools.plot_tools.plot_network_activity(rate_monitor, spike_monitor, voltage_monitor=None, spike_train_idx_list=None, t_min=None, t_max=None, N_highlighted_spiketrains=3, avg_window_width=None, sup_title=None, figure_size=(10, 4))

	Not implemented!
Visualizes the results of a network simulation: spike-train, population activity and voltage-traces.

	Args:

	rate_monitor (PopulationRateMonitor): rate of the population
spike_monitor (SpikeMonitor): spike trains of individual neurons
voltage_monitor (StateMonitor): optional. voltage traces of some (same as in spike_train_idx_list) neurons
spike_train_idx_list (list): optional. A list of neuron indices whose spike-train is plotted.
If no list is provided, all (up to 500) spike-trains in the spike_monitor are plotted. If None, the
the list in voltage_monitor.record is used.
t_min (Quantity): optional. lower bound of the plotted time interval.
if t_min is None, it is set to the larger of [0ms, (t_max - 100ms)]
t_max (Quantity): optional. upper bound of the plotted time interval.
if t_max is None, it is set to the timestamp of the last spike in
N_highlighted_spiketrains (int): optional. Number of spike trains visually highlighted, defaults to 3
If N_highlighted_spiketrains==0 and voltage_monitor is not None, then all voltage traces of
the voltage_monitor are plotted. Otherwise N_highlighted_spiketrains voltage traces are plotted.
avg_window_width (Quantity): optional. Before plotting the population rate (PopulationRateMonitor), the rate
is smoothed using a window of width = avg_window_width. Defaults is 1.0ms
sup_title (String): figure suptitle. Default is None.
figure_size (tuple): (width,height) tuple passed to pyplot’s figsize parameter.

	Returns:

	Figure: The whole figure
Axes: Top panel, Raster plot
Axes: Middle panel, population activity
Axes: Bottom panel, voltage traces. None if no voltage monitor is provided.

	
cxsystem2.neurodynlib.tools.plot_tools.plot_ISI_distribution(spike_stats, hist_nr_bins=50, xlim_max_ISI=None)

	Not implemented!
Computes the ISI distribution of the given spike_monitor and displays the distribution in a histogram

	Args:

	spike_stats (neurodynex.tools.spike_tools.PopulationSpikeStats): statistics of a population activity
hist_nr_bins (int): Number of histrogram bins. Default:50
xlim_max_ISI (Quantity): Default: None. In not None, the upper xlim of the plot is set to xlim_max_ISI.
The CV does not change if this bound is set.

	Returns:

	the figure

	
cxsystem2.neurodynlib.tools.plot_tools.plot_spike_train_power_spectrum(freq, mean_ps, all_ps, max_freq, nr_highlighted_neurons=2, mean_firing_freqs_per_neuron=None, plot_f0=False)

	Not implemented!
Visualizes the power spectrum of the spike trains.

	Args:

	freq: frequencies (= x axis)
mean_ps: average power taken over all neurons (typically all of a subsample).
all_ps (dict): power spectra for each single neuron
max_freq (Quantity): The x-lim of the plot is [-0.05*max_freq, max_freq]
mean_firing_freqs_per_neuron (float): None or the mean firing rate averaged across the neurons. Default is
None in which case the value is not shown in the legend
plot_f0 (bool): if true, the power at frequency 0 is plotted. Default is False and the value is not plotted.

	Returns:

	the figure and the index of the random neuron for which the PS is computed: all_ps[random_neuron_index]

	
cxsystem2.neurodynlib.tools.plot_tools.plot_population_activity_power_spectrum(freq, ps, max_freq, average_At=None, plot_f0=False)

	Not implemented!
Plots the power spectrum of the population activity A(t)

	Args:

	freq: frequencies (= x axis)
ps: power spectrum of the population activity
max_freq (Quantity): The data is plotted in the interval [-.05*max_freq, max_freq]
plot_f0 (bool): if true, the power at frequency 0 is plotted. Default is False and the value is not plotted.

	Returns:

	the figure

	
class cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats(nr_neurons, nr_spikes, all_ISI, filtered_spike_trains)

	Not implemented! Wraps a few spike-train related properties.

	
__init__(nr_neurons, nr_spikes, all_ISI, filtered_spike_trains)

	
	Args:

	nr_neurons:
nr_spikes:
mean_isi:
std_isi:
all_ISI: list of ISI values (can be used to plot a histrogram)
filtered_spike_trains the spike trains used to compute the stats. It’s a time-window filtered copy of
the original spike_monitor.all_spike_trains.

	Returns:

	An instance of PopulationSpikeStats

	
CV

	Coefficient of Variation

	
all_ISI

	all ISIs in no specific order

	
filtered_spike_trains

	a time-window filtered copy of the original spike_monitor.all_spike_trains

	
mean_isi

	Mean Inter Spike Interval

	
nr_neurons

	Number of neurons in the original population

	
nr_spikes

	Nr of spikes

	
std_isi

	Standard deviation of the ISI

	
cxsystem2.neurodynlib.tools.spike_tools.get_spike_time(voltage_monitor, spike_threshold)

	Not implemented!
Detects the spike times in the voltage. Here, the spike time is DEFINED as the value in
voltage_monitor.t for which voltage_monitor.v[idx] is above threshold AND
voltage_monitor.v[idx-1] is below threshold (crossing from below).
Note: currently only the spike times of the first column in voltage_monitor are detected. Matrix-like
monitors are not supported.

	Args:

	voltage_monitor (StateMonitor): A state monitor with at least the fields “v: and “t” spike_threshold (Quantity):
The spike threshold voltage. e.g. -50*b2.mV

	Returns:

	A list of spike times (Quantity)

	
cxsystem2.neurodynlib.tools.spike_tools.get_spike_stats(voltage_monitor, spike_threshold)

	Not implemented!
Detects spike times and computes ISI, mean ISI and firing frequency.
Here, the spike time is DEFINED as the value in
voltage_monitor.t for which voltage_monitor.v[idx] is above threshold AND
voltage_monitor.v[idx-1] is below threshold (crossing from below).
Note: meanISI and firing frequency are set to numpy.nan if less than two spikes are detected
Note: currently only the spike times of the first column in voltage_monitor are detected. Matrix-like
monitors are not supported.

	Args:

	voltage_monitor (StateMonitor): A state monitor with at least the fields “v: and “t”
spike_threshold (Quantity): The spike threshold voltage. e.g. -50*b2.mV

	Returns:

	tuple: (nr_of_spikes, spike_times, isi, mean_isi, spike_rate)

	
cxsystem2.neurodynlib.tools.spike_tools.pretty_print_spike_train_stats(voltage_monitor, spike_threshold)

	Not implemented!
Computes and returns the same values as get_spike_stats. Additionally prints these values to the console.

	Args:

	voltage_monitor:
spike_threshold:

	Returns:

	tuple: (nr_of_spikes, spike_times, isi, mean_isi, spike_rate)

	
cxsystem2.neurodynlib.tools.spike_tools.filter_spike_trains(spike_trains, window_t_min=0. * second, window_t_max=None, idx_subset=None)

	Not implemented!
creates a new dictionary neuron_idx=>spike_times where all spike_times are in the

half open interval [window_t_min,window_t_max)

	Args:

	spike_trains (dict): a dictionary of spike trains. Typically obtained by
calling spike_monitor.spike_trains()
window_t_min (Quantity): Lower bound of the time window: t>=window_t_min. Default is 0ms.
window_t_max (Quantity): Upper bound of the time window: t<window_t_max.
Default is None, in which case no upper bound is set.
idx_subset (list, optional): a list of neuron indexes (dict keys) specifying a subset of neurons.
Neurons NOT in the key list are NOT added to the resulting dictionary. Default is None, in which case
all neurons are added to the resulting list.

	Returns:

	a filtered copy of spike_trains

	
cxsystem2.neurodynlib.tools.spike_tools.get_spike_train_stats(spike_monitor, window_t_min=0. * second, window_t_max=None)

	Not implemented!
Analyses the spike monitor and returns a PopulationSpikeStats instance.

	Args:

	spike_monitor (SpikeMonitor): Brian2 spike monitor
window_t_min (Quantity): Lower bound of the time window: t>=window_t_min. The stats are computed
for spikes within the time window. Default is 0ms
window_t_max (Quantity): Upper bound of the time window: t<window_t_max. The stats are computed
for spikes within the time window. Default is None, in which case no upper bound is set.

	Returns:

	PopulationSpikeStats

	
cxsystem2.neurodynlib.tools.spike_tools._spike_train_2_binary_vector(spike_train, vector_length, discretization_dt)

	Not implemented!
Convert the time-stamps of the spike_train into a binary vector of the given length.
Note: if more than one spike fall into the same time bin, only one is counted, surplus spikes are ignored.

	Args:

	spike_train:
vector_length:
discretization_dt:

	Returns:

	Discretized spike train: a fixed-length, binary vector.

	
cxsystem2.neurodynlib.tools.spike_tools._get_spike_train_power_spectrum(spike_train, delta_t, subtract_mean=False)

	

	
cxsystem2.neurodynlib.tools.spike_tools.get_averaged_single_neuron_power_spectrum(spike_monitor, sampling_frequency, window_t_min, window_t_max, nr_neurons_average=100, subtract_mean=False)

	Not implemented!
averaged power-spectrum of spike trains in the time window [window_t_min, window_t_max).

The power spectrum of every single neuron’s spike train is computed. Then the average
across all single-neuron powers is computed. In order to limit the compuation time, the
number of neurons taken to compute the average is limited to nr_neurons_average which defaults to 100

	Args:

	spike_monitor (SpikeMonitor) : Brian2 SpikeMonitor
sampling_frequency (Quantity): sampling frequency used to discretize the spike trains.
window_t_min (Quantity): Lower bound of the time window: t>=window_t_min. Spikes
before window_t_min are not taken into account (set a lower bound if you want to exclude an initial
transient in the population activity)
window_t_max (Quantity): Upper bound of the time window: t<window_t_max.
nr_neurons_average (int): Number of neurons over which the average is taken.
subtract_mean (bool): If true, the mean value of the signal is subtracted before FFT. Default is False

	Returns:

	freq, mean_ps, all_ps_dict, mean_firing_rate, mean_firing_freqs_per_neuron

	
cxsystem2.neurodynlib.tools.spike_tools.get_population_activity_power_spectrum(rate_monitor, delta_f, k_repetitions, T_init=100. * msecond, subtract_mean_activity=False)

	Not implemented!
Computes the power spectrum of the population activity A(t) (=rate_monitor.rate)

	Args:

	rate_monitor (RateMonitor): Brian2 rate monitor. rate_monitor.rate is the signal being
analysed here. The temporal resolution is read from rate_monitor.clock.dt
delta_f (Quantity): The desired frequency resolution.
k_repetitions (int): The data rate_monitor.rate is split into k_repetitions which are FFT’d
independently and then averaged in frequency domain.
T_init (Quantity): Rates in the time interval [0, T_init] are removed before doing the
Fourier transform. Use this parameter to ignore the initial transient signals of the simulation.
subtract_mean_activity (bool): If true, the mean value of the signal is subtracted. Default is False

	Returns:

	freqs, ps, average_population_rate

Configuration module

	
class cxsystem2.configuration.config_file_converter.ConfigConverter(input_data)

	
	
__init__(input_data)

	Initialize self. See help(type(self)) for accurate signature.

BUI module

	
class cxsystem2.bui.bui.RunServer(ssl=False, port=None, nobrowser=False)

	
	
__init__(ssl=False, port=None, nobrowser=False)

	Initialize self. See help(type(self)) for accurate signature.

visualization module

	
class cxsystem2.visualization.spikedata_to_csvs.SpikeData(filename)

	
	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

	
get_positions_list(xy_multiplier=0.03, z_multiplier=0.03, return_subsets=True)

	Creates a N_neurons x 3 matrix of neurons, where N_neurons = number of neurons,
column 0 = x position, column 1 = y position, and column 2 = z position.
Neuron index implicitly encoded by row number (as expected by ViSimpl/StackViz).
XY-multipliers set here for visually pleasing results in ViSimpl.

	Parameters

	
	xy_multiplier – scalar, how much to scale x-y coordinates

	xy_multiplier – scalar, how much to scale z coordinate

	return_subsets – True/False (default x),

	Returns

	

	
get_spike_data()

	Reads data from a CxSystem results file

	Returns

	dict

	
get_spike_list()

	Creates an N_spikes x 2 matrix of spikes, where N_spikes = number of spikes, column 0 = neuron index,
and column 1 = spike time.
Spike times saved in seconds since this is the default unit in ViSimpl.

	Returns

	numpy array

	
class cxsystem2.visualization.rasterplot_to_pdf.rasterplot_pdf_generator(workspace_path, timestamp, sampling_rate)

	
	
__init__(workspace_path, timestamp, sampling_rate)

	Initialize self. See help(type(self)) for accurate signature.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cxsystem2	

 	
 	
 cxsystem2.bui.bui	

 	
 	
 cxsystem2.configuration.config_file_converter	

 	
 	
 cxsystem2.core.cxsystem	

 	
 	
 cxsystem2.core.equation_templates	

 	
 	
 cxsystem2.core.parameter_parser	

 	
 	
 cxsystem2.core.physiology_reference	

 	
 	
 cxsystem2.core.stimuli	

 	
 	
 cxsystem2.core.tools	

 	
 	
 cxsystem2.core.workspace_manager	

 	
 	
 cxsystem2.neurodynlib.multicompartment_models	

 	
 	
 cxsystem2.neurodynlib.neuron_models	

 	
 	
 cxsystem2.neurodynlib.receptor_models	

 	
 	
 cxsystem2.neurodynlib.tools.input_factory	

 	
 	
 cxsystem2.neurodynlib.tools.plot_tools	

 	
 	
 cxsystem2.neurodynlib.tools.spike_tools	

 	
 	
 cxsystem2.visualization.rasterplot_to_pdf	

 	
 	
 cxsystem2.visualization.spikedata_to_csvs	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | V
 | W

_

 	
 	__init__() (cxsystem2.bui.bui.RunServer method)

 	(cxsystem2.configuration.config_file_converter.ConfigConverter method)

 	(cxsystem2.core.cxsystem.CxSystem method)

 	(cxsystem2.core.equation_templates.EquationHelper method)

 	(cxsystem2.core.parameter_parser.NeuronParser method)

 	(cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.NeuronReference method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	(cxsystem2.core.stimuli.Stimuli method)

 	(cxsystem2.core.workspace_manager.Workspace method)

 	(cxsystem2.neurodynlib.multicompartment_models.LeakyCompartment method)

 	(cxsystem2.neurodynlib.multicompartment_models.LegacyPyramidalCell method)

 	(cxsystem2.neurodynlib.multicompartment_models.MulticompartmentNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.AdexNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.EifNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.HodgkinHuxleyNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.IzhikevichNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.LifAscNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.LifNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.neuron_factory method)

 	(cxsystem2.neurodynlib.receptor_models.ReceptorModel method)

 	(cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats method)

 	(cxsystem2.visualization.rasterplot_to_pdf.rasterplot_pdf_generator method)

 	(cxsystem2.visualization.spikedata_to_csvs.SpikeData method)

 	
 	_get_spike_train_power_spectrum() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	_spike_train_2_binary_vector() (in module cxsystem2.neurodynlib.tools.spike_tools)

A

 	
 	add_external_current() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	add_model_definition() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	add_tonic_current() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	
 	add_vm_noise() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	AdexNeuron (class in cxsystem2.neurodynlib.neuron_models)

 	all_ISI (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

B

 	
 	BC() (cxsystem2.core.physiology_reference.NeuronReference method)

C

 	
 	calculate_input_seqs() (cxsystem2.core.stimuli.Stimuli method)

 	change_anat_file_header_value() (in module cxsystem2.core.tools)

 	CI() (cxsystem2.core.physiology_reference.NeuronReference method)

 	ConfigConverter (class in cxsystem2.configuration.config_file_converter)

 	CPlastic() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	create_connections_key() (cxsystem2.core.workspace_manager.Workspace method)

 	create_results_key() (cxsystem2.core.workspace_manager.Workspace method)

 	CV (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

 	CxSystem (class in cxsystem2.core.cxsystem)

 	cxsystem2.bui.bui (module)

 	cxsystem2.configuration.config_file_converter (module)

 	cxsystem2.core.cxsystem (module)

 	
 	cxsystem2.core.equation_templates (module)

 	cxsystem2.core.parameter_parser (module)

 	cxsystem2.core.physiology_reference (module)

 	cxsystem2.core.stimuli (module)

 	cxsystem2.core.tools (module)

 	cxsystem2.core.workspace_manager (module)

 	cxsystem2.neurodynlib.multicompartment_models (module)

 	cxsystem2.neurodynlib.neuron_models (module)

 	cxsystem2.neurodynlib.receptor_models (module)

 	cxsystem2.neurodynlib.tools.input_factory (module)

 	cxsystem2.neurodynlib.tools.plot_tools (module)

 	cxsystem2.neurodynlib.tools.spike_tools (module)

 	cxsystem2.visualization.rasterplot_to_pdf (module)

 	cxsystem2.visualization.spikedata_to_csvs (module)

D

 	
 	Depressing() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

E

 	
 	EifNeuron (class in cxsystem2.neurodynlib.neuron_models)

 	
 	EquationHelper (class in cxsystem2.core.equation_templates)

F

 	
 	Facilitating() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	filter_spike_trains() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	filtered_spike_trains (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

 	Fixed() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	
 	Fixed_calcium() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	Fixed_const_wght() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	Fixed_multiply() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

G

 	
 	gather_result() (cxsystem2.core.cxsystem.CxSystem method)

 	generate_inputs() (cxsystem2.core.stimuli.Stimuli method)

 	get_averaged_single_neuron_power_spectrum() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	get_compartment_equations() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_initial_values() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_input_positions() (cxsystem2.core.stimuli.Stimuli method)

 	get_json() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_membrane_equation() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_neuron_equations() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_neuron_parameters() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_parameter_names() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_population_activity_power_spectrum() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	get_positions_list() (cxsystem2.visualization.spikedata_to_csvs.SpikeData method)

 	get_ramp_current() (in module cxsystem2.neurodynlib.tools.input_factory)

 	get_refractory_period() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_reset_statements() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	
 	get_sinusoidal_current() (in module cxsystem2.neurodynlib.tools.input_factory)

 	get_spike_data() (cxsystem2.visualization.spikedata_to_csvs.SpikeData method)

 	get_spike_list() (cxsystem2.visualization.spikedata_to_csvs.SpikeData method)

 	get_spike_stats() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	get_spike_time() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	get_spike_train_stats() (in module cxsystem2.neurodynlib.tools.spike_tools)

 	get_spikes_current() (in module cxsystem2.neurodynlib.tools.input_factory)

 	get_states_to_monitor() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_step_current() (in module cxsystem2.neurodynlib.tools.input_factory)

 	get_threshold_condition() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	get_zero_current() (in module cxsystem2.neurodynlib.tools.input_factory)

 	getting_started() (cxsystem2.neurodynlib.neuron_models.AdexNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.EifNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.HodgkinHuxleyNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	(in module cxsystem2.neurodynlib.tools.input_factory)

H

 	
 	HodgkinHuxleyNeuron (class in cxsystem2.neurodynlib.neuron_models)

I

 	
 	IzhikevichNeuron (class in cxsystem2.neurodynlib.neuron_models)

L

 	
 	L1i() (cxsystem2.core.physiology_reference.NeuronReference method)

 	LeakyCompartment (class in cxsystem2.neurodynlib.multicompartment_models)

 	LegacyPyramidalCell (class in cxsystem2.neurodynlib.multicompartment_models)

 	LifAscNeuron (class in cxsystem2.neurodynlib.neuron_models)

 	
 	LifNeuron (class in cxsystem2.neurodynlib.neuron_models)

 	list_neurons_in_json() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	load_from_file() (in module cxsystem2.core.tools)

 	load_input_seq() (cxsystem2.core.stimuli.Stimuli method)

M

 	
 	make_neuron_group() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	MC() (cxsystem2.core.physiology_reference.NeuronReference method)

 	
 	mean_isi (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

 	monitors() (cxsystem2.core.cxsystem.CxSystem method)

 	MulticompartmentNeuron (class in cxsystem2.neurodynlib.multicompartment_models)

N

 	
 	NDNEURON() (cxsystem2.core.physiology_reference.NeuronReference method)

 	neuron_factory (class in cxsystem2.neurodynlib.neuron_models)

 	neuron_group() (cxsystem2.core.cxsystem.CxSystem method)

 	
 	NeuronParser (class in cxsystem2.core.parameter_parser)

 	NeuronReference (class in cxsystem2.core.physiology_reference)

 	nr_neurons (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

 	nr_spikes (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

P

 	
 	parameter_finder() (in module cxsystem2.core.tools)

 	PC() (cxsystem2.core.physiology_reference.NeuronReference method)

 	plot_fi_curve() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	plot_ISI_distribution() (in module cxsystem2.neurodynlib.tools.plot_tools)

 	plot_network_activity() (in module cxsystem2.neurodynlib.tools.plot_tools)

 	plot_population_activity_power_spectrum() (in module cxsystem2.neurodynlib.tools.plot_tools)

 	plot_ramp_current_example() (in module cxsystem2.neurodynlib.tools.input_factory)

 	plot_sinusoidal_current_example() (in module cxsystem2.neurodynlib.tools.input_factory)

 	plot_spike_train_power_spectrum() (in module cxsystem2.neurodynlib.tools.plot_tools)

 	
 	plot_states() (cxsystem2.neurodynlib.neuron_models.AdexNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.HodgkinHuxleyNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.IzhikevichNeuron method)

 	(cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	plot_step_current_example() (in module cxsystem2.neurodynlib.tools.input_factory)

 	plot_vm() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	plot_voltage_and_current_traces() (in module cxsystem2.neurodynlib.tools.plot_tools)

 	PointNeuron (class in cxsystem2.neurodynlib.neuron_models)

 	PopulationSpikeStats (class in cxsystem2.neurodynlib.tools.spike_tools)

 	pretty_print_spike_train_stats() (in module cxsystem2.neurodynlib.tools.spike_tools)

R

 	
 	rasterplot_pdf_generator (class in cxsystem2.visualization.rasterplot_to_pdf)

 	read_abi_neuron_config() (cxsystem2.neurodynlib.neuron_models.LifAscNeuron method)

 	read_config_file() (in module cxsystem2.core.tools)

 	
 	read_json() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	ReceptorModel (class in cxsystem2.neurodynlib.receptor_models)

 	relay() (cxsystem2.core.cxsystem.CxSystem method)

 	RunServer (class in cxsystem2.bui.bui)

S

 	
 	save_json() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	scale_by_calcium() (cxsystem2.core.parameter_parser.SynapseParser method)

 	set_excitatory_receptors() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	set_inhibitory_receptors() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	set_model_definition() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	set_neuron_parameters() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	simulate_neuron() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	SpikeData (class in cxsystem2.visualization.spikedata_to_csvs)

 	SS() (cxsystem2.core.physiology_reference.NeuronReference method)

 	
 	std_isi (cxsystem2.neurodynlib.tools.spike_tools.PopulationSpikeStats attribute)

 	STDP() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	STDP_with_scaling() (cxsystem2.core.parameter_parser.SynapseParser method)

 	(cxsystem2.core.physiology_reference.SynapseReference method)

 	Stimuli (class in cxsystem2.core.stimuli)

 	synapse() (cxsystem2.core.cxsystem.CxSystem method)

 	SynapseParser (class in cxsystem2.core.parameter_parser)

 	SynapseReference (class in cxsystem2.core.physiology_reference)

V

 	
 	VPM() (cxsystem2.core.physiology_reference.NeuronReference method)

W

 	
 	what_is_this() (cxsystem2.neurodynlib.neuron_models.PointNeuron method)

 	
 	Workspace (class in cxsystem2.core.workspace_manager)

 	write_to_file() (in module cxsystem2.core.tools)

Examples

Building a new model

A new network can be designed by using a regular spreadsheet program, such as Excel, whose output is readable by everyone taking part in the research project. The idea is that a scientist leading the project can consult an electrophysiologist or an anatomist without referring to implementation-level code.

Practically, you first need to decide the system structure, e.g. how many of the six cortical layers you are going to model, and which cell groups you want to include in each layer. Cell group definition takes a single row in the Model and Network file. Connectivity parameters (connection probability, synapse type, number of synapses per connection) can then be set in the same file, with a single row for each axonal pathway. In the Physiology file, you can then set the electrophysiological parameters corresponding to each neuron group.

Admittedly, a new project might need functionalities we have not implemented. New features can however be programmed in Python in the Physiology reference file (eg. synapse with STDP) and they can then be referenced in either of the two main configuration files. We try to hide away implementation details so that the complexity (amount of code) would not overwhelm project members, who are not familiar with programming. Thus, the configuration files themselves do not act as perfect blueprints of the new network. We believe such simple interfaces are necessary for fruitful interaction between scientists in any larger project.

Porting an existing model

The first steps to port an existing model to CxSystem is to identify the required type of the target network and as well as define the cell group characteristics. CxSystem already has one type of multi-compartmental neuron and four types of point neurons built in which can be used as templates to replicate the neuron types in the target model. Each of the neuron groups will take a single line in the Model and Network file. The physiological parameters of the neurons should also be modified in the physiological file. In the next step, the type and direction of synaptic connections between the neuron groups should be determined. Finally, the required model and simulation parameters can be imported from one of the currently available Model and Network files in the github, or from other existing model (after filter construction) and the initial simulations can be run.

As an example, we have ported the COBAHH example from Brian2 documentation originally described in a review paper by Brette et al. 1. In the brian2 implementation, this example was implemented with only a single neuron group containing 4000 neurons. We implemented this into two groups: a group containing 3200 excitatory HH cells (HH_E) and a second group containing 800 inhibitory HH cells (HH_I).
Both excitatory and inhibitory cell sub-groups were fully connected to all the other cells. The following table is the network and model configuration file for COBAHH example:

	row_type

	runtime

	profiling

	default_clock

	init_vms

	min_distance

	scale

	params

	1000 *ms

	1

	0.1 * ms

	1

	1*um

	1

	row_type

	sys_mode

	grid_radius

	device

	number_of_processes

	
	

	params

	local

	210*um

	cpp

	1

	
	

	row_type

	idx

	number_of_neurons

	neuron_type

	layer_idx

	net_center

	monitors

	G

	0

	3200

	HH_E

	4

	–

	[Sp]

	G

	1

	800

	HH_I

	4

	–

	[Sp]

	row_type

	receptor

	pre_syn_idx

	post_syn_idx

	syn_type

	p

	n

	S

	ge

	0

	0

	Fixed

	0.02

	1

	S

	ge

	0

	1

	Fixed

	0.02

	1

	S

	gi

	1

	0

	Fixed

	0.02

	1

	S

	gi

	1

	1

	Fixed

	0.02

	1

Next, we created a copy of physiological parameters and modified the HH_E and HH_I neuron parameters, e.g. Vr, El, Vt, etc., according to the COBAHH example. The synaptic weights were also set accordingly. Finally, the essential network parameters, e.g. simulation duration, device, system mode, output folder, was set and the CxSystem was run using the two new csv files. The physiological configuration file for COBAHH example is available in CxSystem Github page. The physiological configuration file is illustrated in the following table:

	Variable

	Key

	Value

	calcium_concentration

	
	2

	# Connection weights #

	
	

	_weights

	w_All_other_E-E_connections

	6*nS

	
	w_All_other_E-I_connections

	6*nS

	
	w_All_other_I-E_connections

	11 * 6*nS

	
	w_All_I-I_connections

	11 * 6*nS

	cw

	cw_HH_E_HH_E

	_weights[‘w_All_other_E-E_connections’]

	
	cw_HH_E_HH_I

	_weights[‘w_All_other_E-I_connections’]

	
	cw_HH_I_HH_E

	_weights[‘w_All_other_I-E_connections’]

	
	cw_HH_I_HH_I

	_weights[‘w_All_I-I_connections’]

	# SYNAPTIC DELAYS #

	
	

	delay

	delay_HH_E_HH_E

	3.0*ms

	
	delay_HH_E_HH_I

	3.0*ms

	
	delay_HH_I_HH_E

	3.0*ms

	
	delay_HH_I_HH_I

	3.0*ms

	# Parameters #

	
	

	HH_E

	C

	200*pF

	
	gL

	10*nS

	
	g_na

	
	* usiemens

	
	g_kd

	
	* usiemens

	
	ENa

	50*mV

	
	EK

	-90*mV

	
	taum_soma

	C/gL

	
	EL

	-60 * mV

	
	Vr

	-60 * mV

	
	Vcut

	20 * mV

	
	VT

	-63 * mV

	
	V_res

	-80 * mV

	
	Ee

	0 * mV

	
	Ei

	-80 * mV

	
	tau_e

	5*ms

	
	tau_i

	10*ms

	
	
	

	HH_I

	C

	200*pF

	
	gL

	10*nS

	
	g_na

	
	* usiemens

	
	g_kd

	
	* usiemens

	
	ENa

	50*mV

	
	EK

	-90*mV

	
	taum_soma

	C/gL

	
	EL

	-60 * mV

	
	Vr

	-60 * mV

	
	Vcut

	20 * mV

	
	VT

	-63 * mV

	
	V_res

	-80 * mV

	
	Ee

	0 * mV

	
	Ei

	-80 * mV

	
	tau_e

	5*ms

	
	tau_i

	10*ms

In this example, we used the built-in neurons types of CxSystem. In the next section, we have provided a guidelne for users who want to build a new type of neuron/synapse and use them in a network model file.

	1

	Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C. and Zirpe, M., 2007. Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience, 23(3), pp.349-398.

 _images/tut1-window04-results_folder_1000px.png
1 Cxsystem2-**CINECA™* - X
€ 5 C @ collabhumenbrainprojecte

Workspace Cxsystem2 - “CINECA™

Tree Remote Folder Structure

exoutput. out
cobaei f/
cobaeif_result
eif results 2
Cobaeif_result -
bacif results 20191211 110
netadata 20191211 110628802

_images/tut2-window01-results_folder_1000px.png
1 Cxsystem2-**CINECA™* - X
€ 5 C @ collabhumenbrainprojecte

Workspace Cxsystem2 - “CINECA™

Tree Remote Folder Structure

exoutput. out
cobaei f/
cobaeif_result
eif results 2
Cobaeif_result -
bacif results 20191211 110
netadata 20191211 110628802

_images/tut1-window02-examples_window_1000px.png
1l CxSystem2-**CINECA*
C & collabhumanbrainproject eu//collab/66643/nav/48410

Cxsystem2 - “CINECA™

Home Import Parameters/Physio Export Parameters Export Physiology Help me Henrl 0 Simulate
‘Simulations Output. ‘Show Workspace. Download Workspace Download Files.

comectons (EER Rasterplot Examples

Examples

We have prepared several configurations files for sample networks of different examples:

Pytest

Click here to load the configuration for the pytest example which is basically a generic sample network.

COBA-EIF
Click here to load the configuration for the COBA-EIF example.

Simplified Markram Model (step 2)

‘This model is a simplification of the Markram et al. (2015) model of the rat somatosensory cortex containing
~31000 neurons divided into 17 neuron groups. Details of the simplification are described in the article.
Running this model should take ~6 minutes per 1 second of simulation time (device=Python).

Click here to load the configuration of the step 2 simplification.

_images/tut1-window03-sim_output_1000px.png
T CxSystem2-**CINECA™ X
€ > C @ collabhumanbrainproject.eu/s/collab/66649/nav/484310

Workspace Cxsystem2 - “CINECA™

Output of the Simulation (last 30 lines)

- Connection created from NG2 BC_L4 to NG2_BC_L4: Number of synapses 1285 Number of connections: 12854
Cortical Module initialization Done.
Starting simulation at <"for a duration of 1. s
susursssssnsusenst Trial 1/1 started running for sinulation number 3: 20191211 1106285 K5 #44sssesssnsssssssess
Current run filename suffix is: 20191211 1106288 k5
The system is running with euler integration method
Systen paraneter cluster_login node not defined.
Brian Code Generator set to Numpy
CxSysten 1s running on python device
Menbrane voltages are being randomly initialized
Default clock 1s set to 100. us
sinulation folder /mnt/cxsys2-storage/cxsys2-workspaces/304441/cobaeif
CxSysten is running in local made
Creating an input based on the central 60 neurons
Neuron model is EIF
Custonized VPH neuron in layer 0 initialized with 60 neurons
Neuron model is EIF
Customized S5 neuron in layer 4 initialized with 3200 neurons.
Neuron model is EIF
Customized BC neuron in layer 4 initialized with 800 neurons
No predefined connection probability, using custom connection rule
Connection created fron NGO relay vp to NGl S5 Ld: Nunbar of Synapses 136251 Nusber of connections: 1
Connection created fron NGS5 Ld to NG1_S5_L4: Number of synapses 204883 Number of connections: 204883
Connection created fron NGL'SS L4 to N62 BC L4: Number of synapses 50772 Number of connections: 50772
Connection created fron NG2 BC L4 to NGL S Ld: Mumber of synapses 51061 Number of connections: 51061
Connection created fron NG2_BC_L4 to NG2_BC_L4: Number of synapses 12860 Nunber of connections: 12860
Cortical Module initialization Done.
Starting simulation at t-0. s for a duration of 1. s
0.3845 (38%) sinulated in 105, estimated 165 remaining
0.5549000000000001 (55%) sinulated in 105, estimated 85 remaining.

_images/tut2-window05-visimpl_1000px.png
File Options

Help

SimPart

Selection | Groups _ Attribute

Calorand s + function

Min size: 10

i Canfiguration
Simulation playback Configuration
Simulation timests 0o
Timesteps per second 20,0000

Step playback duration (s} 5000

Visual Configuration

_images/tut3-window01-neurongroups_1000px.png
@ Cxsystemz

<« C @ 12700133175/

[61]SS at L4 [NeuronGroup

enss s

1

Running index for the neuron group

number_of_neurons
10000

Mumber of neurons i the neuron group

neuron_type

ss

Neuron type

neuron_subtype

Nouron subtype, 0. reference to the concrato sot of paramatars in the physiology corflg

_images/tut2-window02-rasterplot_1000px.png
1l CxSystem2 -**CINECA*
€ 5 C @ ollsbhumenbrainproject.e

Workspace. CxSystom2 - “CINECA*

s
B crsysiomz [. o Paareos Bt Pyskiony b R— Simi

Shon Yorspa Covrioad s

A
Physiology { Rasterplot

Simulation Name (foder name),e.g. cobaef:

cobaeif

Timestamp Suffix, &.g. 20191123_1506036:
20191211_1106288

Samping rafe n percentage, e9. 1%:

1%

Visualize Rasterplot

_images/tut2-window03-open_pdf_1000px.png
18 CxSystem2- **CINECA*

€ 5 C @ collabhumanbrainproject.eu/s/collab/66649/nav/48331

Workspace, Cxsystem2 - “CINECA™

Export Parameters Export Physiology Help

Simulations Output Show Workspace Download Download Files.

Simulation Name (foder name),e.g. cobaet:

cobaeif

Timestamp Suffx, &g, 20191129_1506036:
20191211_1106288

Samping rafe n percentage, eq. 1%:
%

Visualize Rasterplot

4418b1f8-e2ac-4faa-994573cdaB649c59

o A

—_——

Neuron index

04 06
Time (ms)
NG2_BC_L4

_images/tut3-window02-connections_1000px.png
(5412 > 2 [Synapse |

2508

receptor
o
Sets whether the connection i exatatory o ntibHory
pre_syn_idx

2
~Prosynaptc neuron group index

post_syn_idx
2

~Postsynaptic neuron group index

sym_type

Fixed

‘Synapse model

_images/tut3-window03-physio1_1000px.png
@ Cxsystemz x

<« C © 1270013317

£ cxsystemz

Physiology

31 Variable Value -

Variable

o

J

Comment

_images/main_uml.png
parameter_parser

@ neuron_parser @ Synapse_parser

output_namespace{}

void _PC()

void _BC() void _change_calcium()
void _L1i() void STDP()

void _MC() void STDP_with_scaling()
void _SS() void Fixed()

physiology reference module

n referen
output_neuronf{} @sy YR S

void PC() output_synapse{}

void Efi(()) void STDP()
void STDP_with_scaling()

zg:gl g/ls%() void Fixed()

void VPM()

@ Model_and_Network_config @ Physiological_config

Ve
CxSystem " .
Save_data module SHimull module
void neuron_group()
dataf{}
syntax_bank(] void generate_inputs()

void monitors()
void data_loader()

void relay()
gather_result()
void data_saver()

void video()
void VPM()
void spike()

void gather_result()
void save_to_file()

array_run m 0

anatomy_df
physiology_df

void arr_run()
void spawner()
void df_builder_for_array_run()

I @ cluster_run

_images/tut1-window01-cxsystem_main_window_1000px.png
Cxsystemz

@ hbp-bsp-cxsys2.cineca.it ® 0 | @ mcogoito

Hello Vafa n Simulate

Download Simulations Status Simulations Output Show Workspace Clear Workspace

m i e

CxSystem Simulator

CxSystem is a cerebral cortex simulation framework, which operates on personal computers. We have tested the simulation software
with a simplified version of a comprehensive cortical microcircuit model [1], which is available as configuration file. The CxSystem aims at
easy testing and buildup of diverse models at single cell resolution. Implemented on the top of the Python-based Brian2 simulator,
CxSystem supports the main goal of Brian, i.e. minimizing development time, by providing the user with a simplified interface. The
preliminary version of this software has been developed at Aalto University 2012-2015 [2], and the full version at the University of Helsinki
2013-2017. The software is distributed under the terms of the GNU General Public License, Copyright 2017 Vafa Andalibi, Henri
Hokkanen and Simo Vanni. To access the documentation of the CxSystem, please check out the readthedocs page of the project.

Documentation and Tutorial

CxSystem's documentation is available at . Agood place to start leaming how to use CxSystem is the

[Started] Simulation "cobaeif", timestamp: 2020-01-28 14:32:39.349578
o e T A - T S S ey e o s 1) (PR O
[2biitinen, ., Sharfin,F., Vigaro, R, & Vann, . (2015, Feedback t istaldendrtes ks MR signals o neural recepive ikds na spking network model ofthe visualcof [Started] Simulation "cobaeif*, timestamp: 2020-01-28 14:31:53.947425
T DR L R XD [Done] Simulation "cobaeif" started at [2020-01-28 14:31:53.947391]
[Started] Simulation "cobaeif", timestamp: 2020-01-29 02:10:27.180
[Done] Simulation "cobaeif" previously started at [2020-01-29 02:10:27.180]
is now finished

_images/visimpl_screenshot.png

nav.xhtml

 Table of Contents

 		
 CxSystem2

 		
 Introduction

 		
 Using the BSP interface

 		
 Installing locally

 		
 Neurodynlib

 		
 Available neuron models

 		
 Available receptor models

 		
 Visualization in ViSimpl

 		
 Tutorials

 		
 1 - Running an example simulation

 		
 2 - Basic visualization

 		
 3 - Building a new model

 		
 4 - Using neurodynlib

 		
 User’s guide

 		
 Anatomy & simulation configuration

 		
 Simulation run parameters

 		
 External input

 		
 Neuron groups

 		
 Connections

 		
 Monitors

 		
 Physiology configuration

 		
 General model parameters

 		
 Neuron type-specific parameters

 		
 Connection- and synapse-type specific parameters

 		
 Other simulation parameters

 		
 Batch simulations

 		
 Running on cluster

 		
 Setting up the environment

 		
 Transferring the Results

 		
 Visualization

 		
 rasterplot-pdf

 		
 ViSimpl

 		
 Custom visualizations

 		
 Command-line interface

 		
 cxsystem2

 		
 cxvisualize

 		
 cxconfig

 		
 cxcluster

 		
 cxserver

 		
 Running the BUI locally

 		
 Developer’s Guide

 		
 Technical Overview

 		
 Selecting Python, C++ or GPU device

 		
 How the CxSystem works

 		
 Documentation

 		
 Visual Studio Code

 		
 Building the documentation

 		
 Docstrings and reference.rst

 		
 pypi package

 		
 Continuous Integration

 		
 Travis yaml file

 		
 Encrypted Parameters

 		
 Browser User Interface (BUI)

 		
 Folder Structure

 		
 Adding Examples

 		
 Command Line Interface

 		
 Parameters and Models

 		
 Adding parameters

 		
 Adding Neuron Model

 		
 Adding Synapse Model

 		
 Reference Documentation

 		
 Core module

 		
 neurodynlib module

 		
 Configuration module

 		
 BUI module

 		
 visualization module

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

